SOFTWARE ENGINEERING LABORATORY SERIES SEL-94-102

SOFTWARE MEASUREMENT
GUIDEBOOK

Revision 1

JUNE 1995

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

SOFTWARE ENGINEERING LABORATORY SERIES SEL-94-102

SOFTWARE MEASUREMENT
GUIDEBOOK

Revision 1

JUNE 1995

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

Foreword

The Software Engineering Laboratory (SEL) is an organization sponsored by National
Aeronautics and Space Administration/Goddard Spaght Center (NASA/GSFC) and created
to investigate theeffectiveness ofsoftware engineering technologies when applied to the
development of applications software. TBEL was created in 1976 ahds thregrimary
organizational members:

NASA/GSFC, Software Engineering Branch
University of Maryland, Department of Computer Science
Computer Sciences CorporationSoftware Engineering Operation

The goals of the SEL ar@) to understand the softwatevelopment process in the GSFC
environment;(2) tomeasure the effects of various methodologiesls, andmodels on this
process; an@3) toidentify and then t@apply successful developmepriactices. The activities,
findings, and recommendationstbe SEL are recorded in the Softwénegineering Laboratory
Series, a continuing series of reports that includes this document.

This Software Measurement Guidebduks also been released as NASA-GB-001-94, dugto
of the SoftwareEngineeringProgram established Iblge Office of Safetyand Mission Assurance
(Code Q) at NASA Headquatrters.

The following are primary contributors to this document:
Mitchell J. Bassman Computer Sciences Corporation
Frank McGarry , Goddard Space Flight Center
Rose Pajerskj Goddard Space Flight Center

Single copies of this document can be obtained by writing to

Software Engineering Branch
Code 552

Goddard Space Flight Center
Greenbelt, Maryland 20771

i SEL-94-102

Abstract

This Software Measurement Guidebgmlesents information otne purpose and importance of
measurement. It discusses fipecificprocedures andctivities of a measurement program and
the roles of the peoplavolved. The guidebook alstarifiesthe role thatneasurement can and

must play in the goal of continual, sustainedprovement forall software production and
maintenance efforts.

v SEL-94-102

Contents

01 €Yo] o U UUPPPRUPPRN i
Y 0 1] 1 = T U UPPRS V.....
Chapter 1. INTrOUCTION.t e et e ettt e e e e et e e e e et e e e esa e e e eeatnaaeeees 1
I A = = o (o | o 11 Lo 1
A VT4 o o L] PP PPRPPTRUPIN 2
IR B @ 1o =T g1 2= 11 o] o F PP 2
Chapter 2. The Role of Measurement in Software Engineering..........ccccooveuivieviinnevinnnneeens 5
2.1 Measurement To Increase Understanding..........coouuieiiiiiniiiiiiiieieiie e 6
2.2 Measurement for Managing SOftWAIE............oiiiiuiiiiiiii e 12
2.2.1 Planning and EStMAting.........cc.uiiiiiiiiiiiia et eei e 13
p A I - (ox (] o USRI 15
2.2.3 ValIAtiNgG. ... eaans 16
2.3 Measurement for Guiding IMpProvement...........couuviiiiiiiiiieiie e 16
P2 T R O [T [T 53 =T Vo [T o PSP 18
2.3.2 ASSESSING ... ieitieeeit ettt ettt e e et a et e eeaa s 19
P2 TG T = Tod =T || o PP 20
Chapter 3. Establishing a Measurement Program............cccuoeiviiiiieiiinieeei e 21
T80 R €] T | SRR 22
I J A ToT0] o] TSP 23
3.3 Roles, Responsibilities, and StrUCIULEi i 24
3.3.1 The SOUICE Of DAtA......ccuuiiiiiiiiie ettt eeeaan e eeeee 25
3.3.2 Analysis and Packaging...........oooeeuuiiiiiiiiee e 26
3.3.3 TeChNICAl SUPPOIL.... e e a e e eea e eees 26
3.4 Selecting the MEASUILES.ooiiiii e et eeaanns 28
3.5 COSt Of MEASUINEIMEBINL.......iiiiiiie et e e e e e e e e eaa e 30
3.5.1 Costtothe Software Projectscoiiuiiiiiiiiii e 32
3.5.2 Cost of Technical SUPPOIToiiiiiiiiii e e 32
3.5.3 Cost oAnalysis and Packaging...........ooeiiiuiiiiiiiiiii e 33
Chapter 4. COre MEBASUIES. ...ttt ettt e et e e e ettt e e e e et e e e e eta e e e e easa e e aeatnn e eeeeennnnes 35
T O O o 1 PP UPPRUPTRPIN 36
o A =T o] 1o o PP UPPRRRRPPIN 37
4.1.2 Data DefiNItION.......ccieiiiiiiiii et 37
N € (0] £ TP 39
o R B =T o o] 1o o U PPRUPPRRRRPP 39
4.2.2 Data DefiNItIONooieeiiiii e 40
4.3 ProCess CharaCleriStUCS iiiuuuiiiii et e et e e e e e 41

Vii SEL-94-102

G T A B =T o 1 o] 1o o PPN 41
4.3.2 Data DefiNItION.......cooiiiiii e 42
A e (o] [=To)Y g = o 1o ORI 43
g R B =T ox o] 1o o PSP PPRRRRPP 43
4.4.2 Data DefiNItIONcooeuiiiiiii e 43
4.5 ProjeCt CharaCteriStCS iiiei ettt et e e e et e e e et e e eab e e eeannaeaees 44
T A B =T o o] 1o o PRSPPI 45
4.5.2 Data DefiNItION.......ccoeuiiiiiii e 46
Chapter 5. Operation of a Measurement Program. ... 51
5.1 Development and MaiNtENaNCE.ccuuuiiiiii et e e eaen e 53
5.1.1 Providing Datal.......ccuuiiiiiiiiiiii ettt 53
5.1.2 Participating iNn STUAIES........ccuuuiiiii e 54
I N =Tol o 01 Tor= IS0 o] oo s APPSR 54
5.2.1 CoOlleCtiNG DAlA.......ccceuuieiiiiieei ettt 54
5.2.2 Storing and Quality ASsSuring Data..........ccc.veviiiiiiiiiiiiie e 56
5.2.3 Summarizing, Reporting, and Exporting Data..............cccceeveievinneiiinneeeennn. 57
5.3 Analysis and PaCKagmg...........iiiiuuiiiiie e 58
5.3.1 Designing Process Improvement StUdIeS...........coeuuiiiiiiiiiniiiiiineeeiiee e 59
5.3.2 Analyzing ProjeCt DAta............ooiiiiiiiiiiiiie et 60
5.3.3 Packaging the RESULLS...........couuiiiiiiii e 61
Chapter 6. Analysis, Application, and Feedback..............coooiiiiiiiiiiiiii e, 69
G0 R O [T =T 53 =T g T 1] T PP UUPPRR 70
6.1.1 Software AttHDULES. ..o 71
6.1.2 COSt CharaCteriStCSuiiieiiieiiii et e e e e 75
6.1.3 ErrOr CRaracCteriStCSciiuui ittt ettt e et e e e eaaa e eeeees 80
6.1.4 PrOJECE DYNAIMICS. ... iiiuiiieeiii ettt e et e e et e e e e et e e et e e aeeaeaeees 84
G2 Y = g = To |1 o PP 85
6.2. 1 PlANNING. .. .cieteiiiei e e e e ae e aea 86
6.2.2 ASSESSING PrOQIESS. ... iiiiiieiitiie ettt e e et e et e e e e e et e eaanas 89
6.2.3 EVaAluating PrOCESSES.uniiiiiiiiiieie et eeanns 95
6.3 GUIdING IMPIrOVEMENL.ui ittt e e e e e e e et e e eeaa e 96
Chapter 7. Experience-Based GuideliNes.............coooieuiiiiiiiiiiiiiiii e .103.
Appendix A. Sample Data Collection FOIMS..........cooouiiiiiiiiiiiii e 109
Appendix B. Sample Process Study Plan..............coooiiiiiiiie e 127,
AppeNndix C. LISt Of RUIES....... .o eaan s 129...
ADDIreviations N0 ACIONYMIS ittt et e et e e et e e et e e e e et e e e eaan e e eeaan e aeesan e 131
RETEIENCES. ...t ettt e et e e e e et e e e et e e e et e e e e et e e e eat e aeeaas 133
Standard Bibliography of SEL LIteratulr@..........c..uoeiiiiiiiiiiiiiieeii e .135.

SEL-94-102 viii

Figures

Motivation for Understanding the Software Engineering Pracess...........ccccoeevevvnnne.. 7

Effort DiStribution DY ACHIVILYoiiei e 9
Error Class DiStrDULIQN ...t e e e 10
Growth Rate Of SOUICE COUEuiiiiiiiii e e e 11
Change Rate Of SOUICE COUE.........oiiiiiiiiee e e 12
Sample Process RelationShiPS.......oouuiiiiii e 13
Tracking GrowWth RATE........ooiiiiiii et e et e e e e eees 15
The Five Maturity Levels of the CMM...........cooiiiiii e 17
The Understand/Assess/Package Paradigm...........coouuoiiiiiiiiiiiiiiiieeiie e 18
The Three Components of a Measurement Program............cccvevevviinieiiiineeeiinneeens 25

The SEL as a Sample Structure for Process Improvementcccooveveiemnceees 28

Cost Of Software MEASUIEMENTccuuui i e e et eeeeanas 31
Cost Data ColleCtion SUMMALY.........uiiiieieeeii et e e e ea e eaen e aees 39
Error Data ColleCtion SUMIMEALY.........iiiiiieeiiii e e e et eeeaa e eees 41
Process Characteristics Data Collection SUMMALY.............coveveuiiiiiiiiiieiiineeeeiieeees 43
Project Dynamics ColleCtion SUMMALY...........uiiiiiiiiiiiiiie e 44
Project Characteristics ColleCction SUMMALY...........oviiiiiiiiiiiiiie e 49
Three Data Collection MeChaniSMS...........ooouuiiiiiiii e 52
Project SUMMANY STALISTICS. iiietie ittt e et e e e e e e e e eeanns 58
Process Study Plan OULIINE............ e 60
High-Level Development Project Summary REePQIL..........ooovvviiiiiiiiiieiiiieeeeie e, 62
High-Level Maintenance Project Summary Report.........ccoooeiiiiiiiiiiiiiiiineceeieeeeeenn 63
Impact of Ada on Effort DiStribDUION..........oooiiiiii e 64
Sample Error RAte MOEL....... oo 65
SME ArchiteCture and USE..........ooiiiiiiiiiiii et 67
Language USAge TIeIMc.uuu it e et e e e e et e e e et e e eennns 73
(OfeTo [l S =10 ST I =] o (o TSP 74
Derivation of 20 Percent Reuse Cost Factor for FORTRAN..........cccoiviiiiiiiiniinnnnnn. 76
Derivation of 30 Percent Reuse Cost Factor for Adacovvveiiiiiiiiiinieeeec e, 77
Effort DIStribution MOAEL........coun e 78
Staffing Profile MOEL........... e 78

X SEL-94-102

6-7

6-9

6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-23
6-24

A-10
A-11
A-12
A-13

Typical Allocation of Software Project RESOUICES..........ovvvviiiiiiiiiiieiieee e 81

Error Detection Rate DY PRASei it 82
Comparative Error-Class DIStribULIQNS..........oooivuiiiiiiieccei e 83
Cyclomatic Complexity and SLOC as Indicators of Errors (Preliminary Analysis). 84
Growth Rate MOAELcooeeiiee e 85.
Planning ProjeCt DYNAIMICS.cuuuiiiiiieiiii et e e e et eeeaa e e eaan s 89
Growth RaAte DEVIALION.cuuiiiiii ettt e e e e e et e e e et e e e eaanas 91
Change Rate DeVIALION.cc.uuiiiiiie e e et e et eaeaa e eeees 91
Staff EffOrt DEVIATIOIoieee et e e et eeera s 92
Tracking DiSCIEPANCIES.ceeue ettt et e et e et e e e et e e e eaa e e e aenn e aennns 93
Projecting SOftware QUANTY...........iiiiii e 94
Impact of the Cleanroom Method on Software Growthoooviicerireeennnnnnnn. 95
Impact of the Cleanroom Method on Effort Distribution.............cccoovvviiiniiiiinneeennnn. 98
Impact of IV&V on Requirements and Design EIMOrS.........ccooovveiiieiiiiiieeeiinneees 100
Percentage of Errors Found After Starting Acceptance Testingcc..vvvuees 101...
IV&V Error RatesS DY PRaSEccoueiii e 101
Impact of IV&V on Effort Distribution.............ccoooii i 102
IMPACE OF IVEV 0N COST. ittt e et e e e eaa e e eeees 102
Examples of Measures Collected Manually..............coooiiiiiiiiiiiii e 108
Change RePOIT FOIMMot e e e e e e e 110...
Component OrigiNatioN FOMM....... .ot e e e e eaaa e eees 112
Development StatusS FOMML.oouui e e e e 113
Maintenance Change Report FQIM...........ooiiuiiiiiiiiiieiei et 114.
Personnel RESOUICES FOKML.......couuiiiiiiii ettt a e e 115
Personnel Resources Form (Cleanroom VEerSiON).......cc.uuveveuiiieeeiineeeiinaeeeiineeeens 116
Project Completion StatiStiCS FOIM........coouiiiiiiieee e 117
Project EStIMates FOIMM........ et e et e e e aa e eees 118
Project Startup FOIMttt e e e e e 119......
SerVICES/PIOAUCES FOIM....ccuiiiiiii e e e e e et e e e e e eens 120
Subjective Evaluation FOMML...... oo e e eaans 121
Subsystem INfOrmMation FOIM..........oiiiiii e 124
Weekly Maintenance Effort FOIML..........oouiiiiiiii e .125.

SEL-94-102 X

Tables

Sample Software CharaCleriSLCSuui i 8
Distribution of Time Schedule and Effort Over Phases..........cccoooiiiiiiiiiiiiineees 14
Impact of the Cleanroom Method on Reliability and Productivity.................c..c........ 19
Data Provided Directly by Project Personnel............coooviiiiiiiiiiieiece e 38
CRANGE DALA.c.uuiiiiii et e e e ea e aae 40
Process CharacteristiCS DIAtA...........uiiieiuieiiiiii et eeaa e eees 42
Project DYNamMICS DalA.........cccuuiiiiiiiiiiiiie e e e e e e et eaeaa e eeees 44
Project CharacteriStiCS Dal@..........c.uuiiiiiuieiiiii et e e e e eees 47
Questions Leading to Understanding...........oveveuuieiiiiiiieeiie e 71
Software ALHDULE DAtaccoeuuniiiiiiiie et e eeeaa e 72
Analysis of Maintenance Effort Data.............c.uviiiiiiiiiiiiici e 80
Basis of Maintenance CoStS ESHMALES..........ooviuuiiiiiiiiiiiii e 80
Questions Supporting Management ACHVIEIES...........vviieiiiiiiiiiieeee e 86
Project Planning ESUMALES.ccuuuiiiiiiiei et e et e e 88
Indicators of Change Attributable to Cleanroom............coooeeiiiiiiiiiiiiiiin e 97
Impact of the Cleanroom Method on Reliability and Productivity.................c.c......... 99
Indicators of Change Attributable to IV&V..........coouiiiiiii e, 100
Examples of Automated Measurement Support TQQlS..........c.ccoeeveviiieiiiinneeennn. 107

SEL Data CollECHON FOIMLS.ottt e et eeae e e e eaa s 109

Xi SEL-94-102

Chapter 1. Introduction

1.1 Background

his Software Measurement Guidebogkbased on thextensive experience of several
I organizations that have each developad appliedgignificant measureménprograms

over a period of at least 10 years. One of these organizations, the Sé&fhgereering
Laboratory (SEL) at the National Aeronautics and Spabrinistration (NASA)Goddard Space
Flight Center (GSFC), has been studying apglyingvarious techniques faneasuring software
since1976. Duringthat period, the SElhas collected measuremelatta fom more than 100
flight dynamicsprojects ranging in size frorh0,000 to over 1,000,000 sourtiees of code
(SLOC). These measurementttivities have generatexver 200,000 dataollection forms, are
reflected in an onlinglatabase, and have resulted in more thanr@pfrtsand papers. More
significantly, they have bearsed to generate softwagagineering models and relationshipat
have been thbasisfor the softwareengineering policiesstandards, and procedures used in the
development of flight dynamics software.

Many other organizations in botBovernment and industry have documented thigmificant
measurement experienc€See, forexample, Referencesthirough 7.) Thdessons derived from
those experiences refleatot only successes but aldailures. By applyingthose lessons, an
organization caminimize, or atleast reduce, the time, effort, and frustration of introducing a
software measurement program.

The Software Measurement Guidebadskaimed at helpingrganizations to begin or improve a
measurement program. dtoes notprovide guidance for thextensive application of specific
measures (such as how to estimate softwasé oranalyzesoftwarecomplexity)other than by
providing examples tolarify points. Itdoescontain advice foestablishing and using an effective
software measurement program and for understanding some deyhdessonshat other
organizations have learned. Some of that advice will appear counterintuitivejsall based on
actual experience.

Although all of the information presented in this guidebook is derived from specific experiences of
mature measurement programs, the reader must keamdrthat thecharacteristics of every
organization are unique. Some degree of measurenwitical for all software development and
maintenance organizations, amwst of thekey rulescaptured inthis report will be generally
applicable. Nevertheless, each organization must strive to understawd @avironment sahat

the measurement program can be tailored to suit its characteristics and needs.

Historically, many software organizations have established development nasidtenance
processes and standards in an ad hoc manner, obhasie of guidance fronoutside the
organization, or from senior personnel called upon to establish corafzrdards. Ofterthis

approach haded to incompatibilities, unconvinced developmgmtups, and,occasionally,
complete confusionToo often, organizations attempt to generptdicies orstandards and to

1 Some organizations use the temmetricsandmeasuremerinterchangeably.

1 SEL-94-102

adoptparticular technologies without first understandingetkistingprocesses and environment.
This lack of understanding can make a bad situatiorse. Beforeestablishing policies and
defining standards, an organization mustarly understand theenvironment andhe existing
processes. Acommitment to understand and improve losaftware processes requires the
establishment of aoftware measurement prograwhich isthe precursor tgontinual process
improvement.

The following rule is the single most important one regarding software measurement:

Understand that software measurement is a means to an end,
not an end in itself.

A measurement program without a clear purpose will result in frustration, wastgjance, and
confusion. To be successful, a measurement program must be viewvexltasl in the quest for
the improved engineering of software.

1.2 Purpose

The purpose ofhis Software Measurement Guidebaskhreefold. First, it presenisformation
on the purpose and importancenséasurement—informatiotinat has growrout ofsuccessful
measurement applications.

Second, the guidebook presents $phecificprocedures andctivities of a measurement program
and the roles of the peopievolved. Thisguidebook discusses tlmasicset ofmeasureghat
constitutes the core of mosticcessful measurement programs. It also provides some guidance
for tailoring measurement activities as a program matures and an orgargagtiores its own
experiences.

Finally, the guideboolclarifies the role thameasurement can and mysay in the goal of
continual, sustained improvement &lirsoftware production anghaintenance efforthroughout
NASA. As NASA matures in its understanding and application of software, it is attempting to
apply the most appropriate software technologies and methodolgitable. Like anyother
software organization, NASA mubtild a firmfoundation for software standards, policies, and
procedures. Acarefully established measuremgmtogram can provide the rationale for
management decision making, leading to achievement of the goal of sustained improvement.

1.3 Organization
This “Introduction” is followed by six additional chapters and three appendices.

Chapter 2, “The Role of Measurement in Software Engineeriags the groundwork for
establishing a measuremenbgram. The chaptexplains why angoftware groughould have a
well-defined measurement program and provides examples of supportitttatieda bevaluable
in justifying the costs involved in implementing such a program.

Chapter 3,“Establishing a MeasuremeRrogram,” describes thessentialsteps for starting a
measurement program. The chaptenludes organization, key measuremdata, classes and

SEL-94-102 2

sources of datageneralkcost information, and, most importagtal setting and application of the
measurement program.

Chapter 4, “Core Measures,” introduces the recommecaiedset oimeasureshat can benefit
any software organization.

Chapter 5, “Operation of a Measurement Program,” discusses major organizationadetsues,
collection andstorage,quality assuranc€QA) of the data,feedback ofdata, and cost of
operations.

Chapter 6,“Analysis, Application,and Feedback,” presents information tlo@ analysis of
measuremerdata and thapplication and feedback of information derived from a measurement
program.

Chapter 7, “Experience-Bas&lidelines,” offers some precautiofts software organizations
that plan to include software measurement among their development and maintenance processes.

Appendices A, B, and C provide samglgacollection forms, a sampf@ocess study plan, and a
list of rules, respectively.

3 SEL-94-102

Chapter 2. The Role of Measurement in Software
Engineering

Chapter Highlights

i
“ THREE KEY REASONS FOR SOFTWARE MEASUREMENT

1. Understanding Software
 Baseline models and relationships
» Key process characteristics

« Four measurement examples

2. Managing Software Projects
 Planning and estimating
 Tracking actuals versus estimates

« Validating models

3. Guiding Process Improvement
» Understanding
» Assessing
» Packaging

5 SEL-94-102

software development amdaintenance activities and provides sound motivdtiorany

organization to initiate or expand imalysis ofdata andapplication of results. The
chapterexplainsthe threkey reasonfor an organization to measure its softwamgineering
processes angroduct, providing actual examples fromoftware organizations with mature
measurement programs.

T his chapterclarifiesthe role that a software measurement progranplegnin support of

A software organizatioomay want toestablish asoftware measurement program imany
reasons. Those range frofmaving good management informatidor guiding software
development to carryingut researchtoward thedevelopment of some innovative advanced
technique. However, more than 17 years of experience with software measuaetvéigs
within NASA have shown that the three key reasons for software measurement are to

1. Understand and model software engineering processes and products
2. Aid in the management of software projects
3. Guide improvements in software engineering processes

Any one of these reasons should be enough to motivate an organizaiiopletoent a
measurement program. Thaderlying purpose ofany such program, however, must be to
achieve specificesults from thaiseandapplication of the measurespollectingdata isnot the
objective.Most failed measurement programs suffer from inadequate or unclear dagaphot
from an inadequate or uncledata collection process. The rule in Chapteiniplies that the
measurement program must defined in a waythat satisfies specific objective®Vithout such
objectives, no benefit will be derived from the measurement effort.

2.1 Measurement To Increase Understanding

The most important reason festablishing a measuremegmtogram is to evolvdoward an
understanding of software and the softwamgineeringprocesses in order tderive models of
those processes argkamine relationshipamong the process parametdfsiowing what an
organization does and how it operates urdamental requiremerfibr any attempt toplan,

manage, or improve. Measurement provideotilg mechanism availabfer quantifying aset of
characteristics about a specific environment or for software in general.

Increased understanding leads to better management of software projects and improvements in the
software engineeringprocess. A software organization’s objectivay be taunderstand the

status of the softwarengineeringorocess or th@mplications of introducing a change. General
guestions to be addressed might include the following:

* How much are we spending on software development?

* Where do we allocate and use resources throughout the life cycle?
* How much effort do we expend specifically on testing software?

* What types of errors and changes are typical on our projects?

Figure 2-1 illustrates some morepecific questions thatmay be of immediateoncern to a
software manager.

SEL-94-102 6

If | use Ada, will
| increase
productivity and
reduce cost?

How long will it take
to finish if we add more
functionality?

Is reliability
a function of testing
time?

If | add more staff,
how much can | compress
the schedule?

If I change
the testing standards,
will we find more errors?

Figure 2-1. Motivation for Understanding the Software Engineering Process

To be able taddress such issues, an organization must have establisaseliae understanding

of its current softwar@roductand process characteristiog;luding attributes such as software
size,cost,and defects corrected. Once an organizdtasanalyzethatbasic information, it can

build a software model and examine relationships. For example, the expected level of effort can be
computed as a function of estimated software size. Perhaps even more important, understanding
processes makes it possible to predict cause and effect relationships, sheh effect on
productivity of introducing a particular change into a process.

This guidebook emphasizes the importance of developing models of a local organizpdicifits
softwareengineeringorocesses. However, a general understanding @hnineeering osoftware
can also provéeneficial. Itprovides a foundation for appreciatingpich types of models and
relationships apply in a specific software development or maintenance environment.

For example, a manager sholidow that, inany environmenthe amount of effort required to
complete a project is related to thize ofthe software produ@ndthatchangingthe size of the
staff will have aneffect on theability to meet scheduled milestones. The precise efighin the
local environment depends on a complex combinatiofacbrs involving staff productivity,
experience, and maturity. The parameter valuastailor themodel tothe unique characteristics
of the local environment must be deriveaver time, under theareful administration of the
measurement program.

Potential objections testablishing a measuremgmbgram and developing an understanding of
the current processes are numerous:

* My organization is changingo fast.

» Each project is unique.

7 SEL-94-102

» Technology is changing too fast.
* Project results merely reflect the characteristics of the people on the projects.
» | don't care about future projects; | care only about current results.

Each of these objections may have some merit; nevertheless, it is essential to #sthbkstine
before introducing change. Managers who have never colgatadoconfirm or challenge basic
assumptionsabout their environmentsnay havanaccurate perceptions about the software
processes in use within their organizations.

Experience derived from many NASA programs shows that an organization establi=setgne
understanding of its software engineering processes and products should concentrate on collecting
measurementata toreflect certain keysoftware characteristics. TabR1 suggestsample
characteristics and refers to foexamplesthat illustrate the pointsusing actualNASA
experience.

Table 2-1. Sample Software Characteristics

NASA
Understanding Key Characteristics Experience

What are the cost (resource) » Distribution of effort among development Example
characteristics of software in my activities—amount spent on design, code,
organization? test, or other activities 1

» Typical cost per line of code

* Cost of maintenance

* Hours spent on documentation

» Computer resources required

* Amount of rework expected
What are the error (reliability) * Number and classes of errors found during Example
characteristics of software in my development or maintenance
organization? + How and when software defects are found 2

* Number and classes of errors found in

specifications
» Pass/fail rates for integration and system
testing

How does my organization’s rate | « Typical rate of growth of source code during Example
of source code production (or development
change) compare to previous « Typical rate of change of source code during 3
experience? development or maintenance
How does the amount of * Total number of lines of code produced Example
software to be developed relate | . gSchedule as a function of software size
to the duration of the projectand | | Cost as a function of size 4
the effort required? What is the)
relationship between estimated | ® Total number of pages of documentation
software size and other key produced
parameters? » Average staff size

SEL-94-102 8

Example 1:
Effort Distribution Characteristics

Knowing the distribution of effort over a set
of software development activities ca
contributesignificantly to anunderstanding
of software engineering processes. One Other
NASA organization analyzeddata from

over 25 projects, representing over 2(
staff-years of effort on actuamission

software, to build the model shown in
Figure2-2. Themodel of effort distribution
over a set of softwaredevelopment
activities, whichmay occur acrossvarious

phases of the softwardife cycle, is 30%
invaluablefor managemeatnning on new
projects. The organization uses détam
ongoing projects to update theodel,
which continues to evolve, providing more

accurate information for future project Figure 2-2. Effort Distribution by Activity
managers in that environment.

Design
23%

Code
21%

Many software organizationsistakenly assume that a generic model of distribution
acrosdife-cycle activitieswill applyfor anyorganization and iany application domain. It

is possible to derive a model, or a hierarchy of models, miite generaapplicability.

For example, useful models can be derivedabglyzingdata fromall software projects
throughout NASA or for all flight simulator software projectshroughout NASA.
However,local organizations can apply such models wihying degrees otonfidence
and accuracy. Experience has shdhaet amodel derived from, andpdated with, data
collected withinthe specific software environment is a moeecurate tool—a more
suitable means to a desired end.

Before local effort distribution wasinderstood,managers had taely on general
commercial models. There was also no understanding of howch time software
developers spent on activitiegher thandesigning, coding, and testisgftware. In the
model shown, forexample,the “other” categoryncludes activities such as training,
meetings, and travel.

Experience has showvthat such modelsre relatively consistent across projeatsthin a
specific environment. This modehay not bedirectly applicable toother software
development environments, however, becauseafbles such as personnel, application
domain, tools, methods, anthnguages. Each software organization should produce its
own effort distribution profile.

2 Commercial models of effort distribution have historically recommended allocating 40 percent of project
resources to analysis and design, 20 percent to coding, and 40 percent to testing.

9 SEL-94-102

An organization must also decidich activities and grtions of the software @ystem
life cycle will be included inthe model or models. Even managers withire local
organization can use thmodel shown in Figur@-2 only for development projects,
because no softwammaintenancedata areincluded inthe modelAny maintenance
organization, however, can developimilar model. Further, theample domain is limited
to softwareengineering concerns. An organizatityat develops or maintainsomplete
systemsnust establish anaaintain modelshatinclude activitiesacross the entirgystem
life cycle.

Example 2:
Error Distribution Characteristics

Another important part afinderstanding the softwaeagineeringprocess iveingaware

of the commorclasses okrrors. Software projegiersonnel must understandt only

where errors originate and whdbhey arecorrected, but also thelative rates of error
occurrence in different classes. A measurement program provelegans to determine

error profiles. Software project personnel can psefiles of error characteristics to
improve development processes on future projects or on later stages of an ongoing
project.

Figure2-3 represents simple model okrror characteristics for one NAS@nvironment.

A large sample of NASAorojects collected data representing more than 10,000 errors
over a 5-year period. Thaefinitions ofthe eror classesare meaingful to the organi-
zation that collectednd analyzethe data butmaynot besuitable inother environments.
Each organization must characterize tlasses otrrors that are important s own
environment.

The distribution percentages shown inti@del are specific tthe organizatiothat pro-
vided the data. Moreover, ithis environmentthe generaprofile of errors does not
changesignificantlyacrosdifferentprojects. Although therror ratehas steadily declined
over a period of years, thgofile shown
has remained relatively stable.

. e c tati Initialization
An environment-specific model dafrror omputation 15%

D) . 15%
distribution can provide decisicgupport

for the planningand management of ney
projects. A manager who noticsat one
class oferror isbecomingmore common
can redirect effort to concentrate drat |
class during inspections and reviews. A 3q0
error class distribution profile serves as
measurement tool to help both
management and technical personr Interfaces
isolate errors earlier inthe softwardife 24%
cycle,reducelife-cycle costs,and increase
software reliability.

Logic/Control
16%

Figure 2-3. Error Class Distribution

SEL-94-102 10

Example 3:
Software Growth and Change Characteristics

Insight into the rates ajrowth andchange of source code alkelps to build aetter
understanding of softwaengineeringprocesses. Code growtbflects therate atwhich
source code is added to a controlldmtary; code change reflectaodificaions to the
controlled, orbaselined, library. An understandingtioé model for suchrates can provide

a basidor determining if a newproject is progressing as expected or if it is producing or
changing source code at a rate that differs from the organization’s historical profile.

Figure2-4 depicts théypical rate of growth of source code IMNBASA environment. The
data werealerived from over 20 software projetitstfollowed a waterfallife cycle. This

information is usedonly to model typicaprojects in one particular environmengt to

determine the quality of a given process.

System | Acceptance

100 Design Code/Test Test Test

90

80 —

70 —

60 —

50 —

40 —

% of Total SLOC

30 —

20

10

10 20 30 40 50 60 70 80 90 100
% of Schedule

NOTE: SLOC = Source Lines of Code

Figure 2-4. Growth Rate of Source Code

Figure2-5 shows tha@ccumulated changes $ource code during the developmphéases
in the same environmeroth of theprofiles shown hereere derived from measurement
data that werenexpensive to collect and analyze, ahé resultingnodelsare quite
stable.

11 SEL-94-102

System | Acceptance
9.00 Design Code/Test Test Test

8.00 —

7.00 —

6.00 —

5.00 —

4.00 —

3.00 —

Cumulative Changes per KSLOC

2.00 —

1.00

:]]] - 1
10 20 30 40 50 60 70 80 90 100

% of Schedule

0.00

NOTE: KSLOC = 1,000 Source Lines of Code

Figure 2-5. Change Rate of Source Code

Example 4:
Software Process Relationships

The functional relationships betweproductand process parameters provadilitional
understanding of an organization’s softwarggineeringprocessesThis understanding
can be applied tahe planningand management of subsequent projecthersame
environment.

Figure2-6 presenexamples of a few key relationshipst werefound useful in several
NASA environments. A SELreport (Reference 8) discussdahose andother such
relationships andiow they can be applied. Thalationship constantare periodically
revised to reflect evolving organizational moddfer the historical database h&gen
created, thadditional effort required to develop such relattups haproved to besmall

and worthwhile, leading to increased understanding of the software engineering process.

2.2 Measurement for Managing Software

The second key reasdor establishing an effective measuremanoigram is to provide improved
management information. Having an understandirth@foftwarenvironment based on models

of the process and aelationships amonthe process angroduct parameterallows for better
prediction of process results and more awareness of deviations from expected results. Thus,
understanding the softwaeagineeringorocess leads to betteranagement decision making. The
understanding comes froamalyzing locatata; withoutanalysis, anylatacollection activity is a

SEL-94-102 12

Effort (in staff-months) = 1.48 * (KSLOC)0-98
Duration (in months) = 4.6 * (KSLOC)0-26
Pages of Documentation = 34.7 * (KSLOC)?-93
Annual Maintenance Cost = 0.12 * (Development Cost)

Average Staff Size = 0.24 * (Effort)0-73

Figure 2-6. Sample Process Relationships

waste of effort. The next step is to use the understatiilxigomes from thengineering models
to plan and manage software project activities.

Focus on applying results rather than collecting data.

A measurement prograthat focuses on thepllection process, dhat does not havedcearplan
for applying the acquired understanding, will fail.

Specifically, the knowledge gained about the software engineering process will be used to
» Estimateproject elements such as cost, schedules, and staffing profiles
» Trackproject results against planning estimates
» Validatethe organizational models as the basis for improving future estimates

Engineering models and relationships provide a foundédiotne softwarengineering estimates

that orm an importanpart of the projectnanagement plan. Withoatcuratemodels based on

similar classes of software development and maintenance activities, project management success is
uncertain.

The next three sections address the use of models and relationships in more detail.

2.2.1 Planning and Estimating

One of the mostritical responsibilities of aoftware project manager is developing a software
projectmanagement plan, ame of the most importastements othat plan is aset of project
estimates for cost, schedule, staffing requirementsesource requirements, and risks.
Measurement results frosimilar completed projects are used to derive softwargineering
models (providing an understandingtloé environment)yhich, inturn, are used to develop the
estimates. Theuality of the information inthe historical database directly affedtse quality of

the softwareengineering modeland, subsequently, tlygiality of the planning estimatefor new
projects.

13 SEL-94-102

A manager who can produce a product size estimate basedtwarefunctionality requirements

can then derive such estimatesastand schedule using organizational models and relationships.
The standard size estimateghin the SEL are currently based on developexs of code
(DLOC). (For adetailed discussion of DLOC—software size with a weighfi@ogor applied to
reused code—see Reference 9 and Seclidn® and 6.1.2 athis document.}siven a prauct

size estimate antthe distribution percentages showTable 2-2 (Referenck0), amanager can
derive project cost (measured as staff effort) and schedule estimates using the relationships

Effort (in hours)= DLOC / Productivity

where
Productivity= 3.2 DLOC per Hour

for FORTRAN, and
Duration (in months¥ 4.9 (Effort [in staff-month$p

for attitude ground support systems (AGSSSs).

Forexample, assuming an estimapedductsize 0f99,000 DLOC for an AGSS to be developed
in FORTRAN, a total effort ofapproximately 200 staff-months and tatal duration of
approximately 24 calendar months can be estintalidde table also provides derived project
estimates for theostand duration of each majlife-cycle phase. In this modethe design phase
comprises requirements analygiseliminary design, and detailed design, and thet phase
encompasses boslystem and acceptantast. Initial planning estimateshay have to badjusted
for changes in requirements or schedule. It is also important to note thpétifeeparameters in
the relationships shown heia@e highly dependent on environmentaictors, such as thiecal
definition of a line ofcode. Although anyone can use this model as a starting peadf
organization must analyze its data to derive its own distribution model.

Table 2-2. Distribution of Time Schedule and Effort Over Phases

Distribution Model Sample Derived Estimates
(Reference 10) (for 99,000 DLOC)
Completion Staff-
Life- Time Milestones Months
Cycle Schedule Effort (Months by (Allocated
Phases (%) (%) Phase) by Phase)
Design 35 30 8.4 60
Code 30 40 7.2 80
Test 35 30 8.4 60

3 The conversion between staff-months and staff-hours is organization-dependeistekample, 1 staff-month =
157 staff-hours.

SEL-94-102 14

2.2.2 Tracking

An importantresponsibility ofsoftware projectmanagement is trackintdpe actual size, effort,

budget, and schedule against the estimates in the approved plan. Successful, effective management
requiresvisibility into the progress and genesshtus of the ongoing project, so thiately and

informed adjustments can be made to schedbledgets, and processes. Pericghmpling of

project measurement data provides that visibility.

The extent and effectiveness of the project tracking process depends on the availalgiifitgnd
of a set ofhistorical models and relationshipstie only available model iselated tocost data,
then management tracking will benited to cost information. However, a moextensiveset of
derived models for staff size, softwageowth rate, softwarehangerate, error rateand other
parameters will facilitate a broader tracking capability.

Figure2-7 illustrates the process of tracking the actual softgeve/th raté against thelanning
estimates. In this illustratiothe plannedgrowth estimates are based on thedel introduced in
Figure 2-4. A deviation of the actuavalues fromthe expected curvedicates simplythat
something is different frorthe historical model. Such a deviatiolmes notnecessarily signal a
problem; rather, it can provide the programanager with an opportunity texplain the
difference. In particularthe deviatiormay haveesulted from a planned improvement. For
example, groject that igeusing a larger amount of code thantihmcal past projectnay show

a sharp jump in growth rate when reused code is moved into the controlled library.

System | Acceptance
Design Code/Test Test Test

|
90 1
Expected Range;”

100

80 —
Planned _____
70 Actual —

60 —

50 —

40 —

—————— ——— —

% of Total SLOC

30 —

20 —

- [
10 20 30 40 50 60 70 80 90 100

% of Schedule

Figure 2-7. Tracking Growth Rate

4 Software growttratereflectsthe rate at which programmersmpletethe unit testing ofource code. In Figure
2-7, theactual percentage of the total is computed with respect to the estimated size at completion.

15 SEL-94-102

2.2.3 Validating

Once a manager has talaility to track actual projeaineasures against planniegtimates, he or

she can begin taseany observed differences éwaluate the status of the project andupport
decisions to take corrective actions. Figure 2-7 also shoa#oammblerange of deviation around

the planned or expected values on the growth curve. Observing the trend of the actual growth rate
relative tothe planned values can provide a management indicator of a heatifgct (as
determined by growth patternwithin the expected range) or a potenpiedblemthat requires

further evaluation to determine the cause (as is the case in Eigur&ith the insight gained by
observing the trend, a manager can adjust staffing or schedule to get the project back on track.

Although it is obvioughat an actualalue belowthe allowablerangemay indcate a cause for
concern, it is perhaps less obvious that an actual ttzdtialls above theallowablerange should
also generate a management investigation. In this examptHfveare growth rat@above the
allowable range may indicateghat some other projectactivities are notbeing performed or,
perhaps, that the wrongmodel was used foplanningand estimation. Consistent and regular
deviations may also indicate a need to adjust the organization’s models.

Examples within thissection have illustratethat a baseline understanding dhe software
engineeringorocess derived from historical results provittesessential model, which leads to
the planningestimate which makeghe trackingoossible. The process of tracking actual versus
plannedgrowth values provideghe insightfor model validationyhich facilitates adjustments by
project management. THendamental element of measurem&mpport for projectmhanagement

is understanding the software engineering process.

2.3 Measurement for Guiding Improvement

The primaryfocus ofany softwareengineering organization is fwoduce aigh-quality praluct

within schedule antludget. However, a constant goal, if the organization &vodve andyrow,

must be continual improvementtime quality of itsproducts andervices Productimprovement

is typically achieved by improvinghe processes used to develop ghauct. Process
improvement, whichrequires introducing changemay beaccomplished bymodifying
management or technical processes or by adopting new technologies. Adoption of a new
technologymayrequire changing an existipgocess. lrany case, software measurement is a key
part ofany process improvement program; knowitg quality of the productevelopedusing

both the initial and the changed process is hecessary to confirm that improvement has occurred.

There areseveral popular paradigms for software process improverfRentexample, the
Capability Maturity Model (CMM) for Software (Referenckl), produced by the Software
Engineeringinstitute (SEI) at Caregie Mellon University, is aidely accepted benchmark for
software engineering excellence. It provides a framework for grouping key software practices into
five levels ofmaturity. A maturitylevel is anevolutionary plateau on the patwardbecoming a
mature software organization. Tfxe-level model, represented in Figu2e8, provides a defined
sequence of steps for gradual improvement and prioritiesactions formproving software
practices.

SEL-94-102 16

Optimizing

Continually :

Improving Process

Predictable z/lanaged
Process

Standard, Defined
Consistent Process

Repeatable
Disciplined 2
Process

Initial
1

Figure 2-8. The Five Maturity Levels of the CMM

The SEI provides the following characterization of the five levels:

1. Initial—The software process is characterized as ad hocoandsionally, even chaotic.
Few processes are defined, and success depends on the efforts of individuals.

2. Repeatable-Basicprojectmanagement processa® established térack cost,schedule,
and functionality. The necessary process discipline is in place to repeat earlier successes on
projects with similar applications.

3. Defined—he software process for bottnanagement and engineering activities is
documented, standardized, and integrated into an organization-wide software process. Al
projects use a documented and approved version of the organization’s process for
developing and maintaining software.

4. Managed-Petailed measures of the software processpaoductquality are collected.
Both the software process and products are quantitatively understood and comsmged
detailed measures.

5. Optimizing—€ontinuous process improvementeisabled by quantitative feedbaitkm
the process and from testing innovative ideas and technologies.

The CMM is an organization-independent mdtiek emphasizes improvingrocesses to reach a
higher maturitylevel whencompared to a common benchmark. Such a model presugpases
the application of more mature processes will result in a higbality product. In contrast, the
SEL has introduced a process improvement paradigm for NASAsp#tific emphasis on

17 SEL-94-102

producing a better product based onititividual goals of the organization. Figu2e9 illustrates
the SEL’s Understand/Assess/Package paradigm.

In the SEImodel, a baseline assessment obanization’s deficiencies, witlespect to the key
processesdefined at each othe maturitylevels, determineshe priority withwhich the
organizationmplementsprocess improvements. In t&&EL model, thespecific experiences and
goals of the organizatiafrive changeqSee Reference 12 for a more detailed comparison of the
two paradigms.)

PACKAGING

Define, redefine, and tailor
processes and models on the basis of
new experiences

Iterate

ASSESSING

¢ |dentify changes

* Set goals

¢ Choose processes and experiment
¢ Execute processes
UNDERSTANDING ¢ Analyze data and determine impact

* Establish baselines
* Extract and define processes
* Build models

Time >

Figure 2-9. The Understand/Assess/Package Paradigm

2.3.1 Understanding

Section 2.1 introducedinderstanding as thprimary reason forestablishing a measurement
program; thatsame understanding providdse foundation foNASA’s processimprovement
paradigm. To provide the measuremieasisfor its softwareengineeringorocessmprovement
program, an organization mustgin with a baseline understandingtué current processes and
products by analyzing project data to defi/emodels ofthe softwareengineeringorocesses and

(2) relationships among the process and product parameters in the organization’s environment.

As the organization’s personnel use thedels and relationships to plan and manage additional
projects, they should observe trendtentify improvementopportunities, and evaluate those
opportunities for potential payback tive organization. Asnprovementsareimplemented, new

project measurement results are used to update the organization’s models and relationships. These
updated models and relationships improve estimates for future projects.

SEL-94-102 18

Improvement plans must be maddhe context of the organization’s goals. Improvement can be
defined only withinthe domain of the organization—there are naiversal measures of
improvement. An organizatiomay base its process improvement goals on productigagf,
reliability, error rate,cycle time, portability, reusability, ciesner satisfaction, oother relevant
characteristics; however, each organization must determine what is most importamacal its
environment. Using measurementths basisfor improvement permits an organization to set
specificquantitative goals. Faxamplerather than simplgtriving to reduce the error rate, an
organization can establish a goal of lowetimg error rate by 50 perceiteterminingthe effect

of introducing change requires initial measurement of the baseline.

2.3.2 Assessing

Once an organization understands the cumesdels and relationships reflecting its software
process angroduct, itmay want tcassess thenpact of introducing a process change. It should
be noted that a&hangeis not necessarily anmprovement Determiningthat achange is an
improvement requiresnalysis ofmeasures based on the organization’s gdats.example,
assumethat anorganization’s goal is to decrease #or rate indelivered software while
maintaining(or possibly improving}he level of productivity; further assunmlat theorganization
has decided to change the process by introducing the Cleanroom method (Ref8)ence
Cleanroom focuses oachieving higher reliability(i.e., lower error rates) througHefect
prevention. Because the organizatioptémary goal is to reduce therror rate, there is no
concern that th€leanroom method doemt address reuse, portabilitymaintainability, ormany
other process and product characteristics.

During a recent study (Referenb4), the SELassessed thepact of introducinghe Cleanroom
method. Table-3 shows the error ratnd productivity measures for thaselineand thefirst
Cleanroom project. The results of teperiment appear to provigeeliminary evidence of the
expected improvement in reliability following introduction of the Cleanroom methochayalso
indicate an improvement in productivity. Chapter 6 provides additional detatise of SEL
Cleanroom study.

Table 2-3. Impact of the Cleanroom Method on Reliability and Productivity

Error Rate

(Errors per Productivity
Data Source KDLOC) (DLOC per Day)
Baseline 5.3 26
Cleanroom 4.3 40

NOTE: KDLOC = 1,000 Developed Lines of Code

19 SEL-94-102

2.3.3 Packaging

NASA experience has showhatfeedback and packaging of measured results augstr soon
after completion of an impact assessment. Packatypgally includes written policies,

procedures, standards, and guideboékgh-quality training material and trainirgpurses are
also essential parts of the packages.

For example, tancorporate the Cleanroom method as an intquadl of its software develop-
ment activities, an organization must first prepare rieeessary documentation and provide
training to all affected project personnel. Packaging is discussed in more detail in Chapter 5.

SEL-94-102 20

Chapter 3. Establishing a Measurement Program

Chapter Highlights

GOALS

Understanding the organization’s goals
Understanding measurement’s application
Setting expectations

Planning for early success

SCOPE

» Focusing locally
e Starting small

ROLES AND RESPONSIBILITIES

* Providing data
¢ Analyzing and packaging
¢ Collecting and storing

SELECTING MEASURES

e Ensuring that measures are applicable
e Minimizing the number of measures
* Avoiding over-reporting

MEASUREMENT COSTS

» Project costs—the source of data
¢ Technical support costs
¢ Analysis and packaging costs

21 SEL-94-102

engineering activities, it is ready to establish a measuremegrtapro Theeffective

application of information derived from measurement entails building magtkisifying
the strengths and weaknesses of a particular processaiding the management decision
process. A clearwell-defined approach for theapplication andanalysis of measurement
informationwill minimize the costand disruption to the software organizatiBuoilding on the
advice ofthe preceding chaptdahis chapter addressdbe following topics and provides
recommendations for successfully establishing a new measurement program:

Q fter an organization understands the roles thaasurement caplay in software

* Understanding the organization’s goals

» Defining the scope of the measurement program

» Defining roles and responsibilities within the organization
» Selecting the appropriate measures

e Controlling the cost of measurement

3.1 Goals

First, the organization must determine what it wants to ga@nthrough measurementhis
requirement leads to the next rule:

Understand the goals.

The goals of an organization may be to increase productivity or quality, i@akisgmprove the
ability to stay on schedule, or improve a managabitity to make informed decision3ypically,

an organization that implementing a measuremgmbgram hasll of these goals. Although it is
admirable towant to improveeverything immediately, establishifgiorities for achieving the
goalsincrementally is essentighfter clarifying the organizational goals, the organization must
recognize the need to establish a measurement program to achieve its goals.

Understand how to apply measurement.

If the goal is toimprove productivity, foexample, thethe organization must know its current
productivity rate and understand ifgroductand process characteristics. Both prerequisites are
supplied by measurement.

The results of a measurement prograith Wwe used in different ways at eadével of the
organization. Senior managemevill be interestedprimarily in how the progranimproves the
capabilities and productivity d¢he organization and in the effect on Hodtom line. Project
managerswill be concerned with th@nmpact on planninggnd managingurrent project efforts.
Software developers will be interested in how the programmwikework easier comparedith
theimpact ofdatacollection requirements. Successful measurement prodpegis by involving
all participants in defining the goals.

SEL-94-102 22

Because personnel at different organizatiéeals will view anew measurement progrdrom
different perspectiveshe success of the progralemands thahoseresponsible for introducing
measurement follow the next rule:

Set expectations.

The implementation of a measurement program will inevitably introduce change; chabgagill
some resistance and sormgtial problems. Tominimize resistance, bothmanagement and
technical personnel must beepared to expect and accept the change and to encourage others to
be persistent and patierRroper setting of expectations widhhance potentisdupport and
acceptance from all management and technical personnel affected by the changes.

Plan to achieve an early success.

The first project should be selected carefully with the objective of demonstrating evideadg of
benefits. Measurement programs sometinfag because well-intentioned measurement
coordinators waitoo long “for all the results to coma” before reporting progress senior
management. It is critical teeport preliminaryresults as soon gmssible afteestablishing the
program. The startumvestment is significant, so management nsest arearly return on that
investment, or the programlikely to be canceletiefore measurement analysts can protatle
the results.”"Equally important, project personnel need to see evidence dbahefits of their
efforts to reduce theimevitable resistance. Thearly payoffmay be, forexample, abetter
understanding of théypical classes oérrors that are detected in tlheganization’s software
projects or an understanding of tleative amounts of timéhat personnel spend in coding as
compared with testing.

Although early feedback is essenti@r success, it is prudentt topromise substantial
improvement duringthe early phases othe programWorthwhile analysis, synthesis, and
packagingtake time andeffort. Development and maintenance teams must be conditioned to
expect gradual, incremental improvements.

3.2 Scope

After the goals of the measurement program established andinderstood,measurement
personnel must define the scope of the program, making the following critical decisions:

* Which projects should be included in the organization’s measurement program?
* Which phases of the software life cycle should be included?

* Which elements ofhe projecstaff should be includedpr example, is it important to
includethe effort of secretarialipport, publicationsupport,andtwo ormore levels of
management?

23 SEL-94-102

Those responsible fonakingthese decisions must consiteth thepreviously defined goals and
the need t@ainacceptance from project personnel who will be affected by theneasurement
program. The next two rules provide help in defining the scope.

Focus locally.

The scope of the measurement program shouldlibiged to the local organization.
Organizational goals should have been based on the neguetific self-improvementsot for
making comparisons witbthers. Wherdefining processes for dateollection andanalysis, it is
important to use concepts and termattare understoddcally. Precious effort shouldot be
expended developing universal or unnecesdanigd-basedefinitions of measuremenbncepts
and standardsSimilarly, it isimportant to focus on developinghah-quality local measurement
data centerCombining detailed measuremeatdta into largerinformation centers has never
provedbeneficialand has consumesiynificantamounts of effort. Consultation withanagement
and software personnel can ensure proper focus and increase acceptance.

Start small.

When establishing a measurementgpam, it is alwaysmportant tostart with a small scope.
Limiting the number ofprojects, restricting the portions of the softwhifie cycle tothosewith
already well-defineghrocessesvithin the organization, ananiting staff involvement to essential
personneWill all help tominimizeresistance from, and impamh, managers and development or
maintenance personnel. Teeope of the program will evolve, but tthieme to increas¢he size of
the program is after it has become successful.

3.3 Roles, Responsibilities, and Structure

After the organizational goals aneell understood and the scope of theasurement program is
defined, the next step is tefineroles and responsibilities. In a successful measurenamtam,
three distinct roles must be performed by components of the organization:

1. The source of dataproviding measuremertata from ongoing softwardevelopment
and maintenance activities

2. Analysis and packagirgexamining measuremedata andderiving processmnodels and
relationships

3. Technical suppo#-collecting, storing, and retrieving project information

Figure 3-1 illustrates the components and tiedationships among them. Each component must
perform its distinct role while maintaining a close relationship with the other two components.

SEL-94-102 24

models, relationships,
processes
'
Source of Data
Provide objective information
Provide subjective information

Attend training
Produce lessons-learned experience project information
Use provided processes and models

e Understand
® Assess and Refine
* Package

raw data Analysis and Packaging
) models, relationships, Analyze experiences . .
analysis reports Develop models and relationships
update requests Produce standards and training
Provide feedback

validated data

Maintain the Information epository |
T -

Technical Support

Write data collection procedures
Establish database structure

QA and feed back data
Archive data and documents

Figure 3-1. The Three Components of a Measurement Program

The next sections introduce the componergsponsibilities irstarting a measurement program
and mapthe components into the organizatiostalicture. (Chapter ®Hriefly describes the
operational responsibilities of the three components.)

3.3.1 The Source of Data

The responsibility ofthe development andaintenance component is to provigi®ject data.
Providingdata is theonly responsibility imposed otiie development andaintenance personnel;
they arenot responsible foranalyzingthe data. Thesgersonnel can reasonably expect to be
provided with training that includes, at a minimum, the following information:

25 SEL-94-102

* Clear descriptions of all data to be provided

» Clear and precise definitions of all terms

* Who is responsible for providing which data

* When and to whom the data are to be provided

In exchange, the development andintenance componenttbe measurement prograeceives
tailored processes, refined process models, experience-based policies and standards, and tools.

3.3.2 Analysis and Packaging

The analysisand packaging component is responsible for developinglelivéring the training

that will provide the developers andaintainers withthe specific information listed in the
previous sectionAnalysisand packaging personnel must design and dettedoplatdorms and

receive theraw data from the repository¥hey are responsible forexaminingproject data;
producing tailored development and maintenance procéssethespecific project domain;
generating organization-specific policies and standards; and generalizing lessons, information, and
process modelsThis measuremenprogram componentontinually receivedata from the
developers and maintainerssaftware and, in returrgcontinually provides organization-specific
experience packages such as local standards, guidebooks, and models.

Organize the analysts separately from the developers.

The analysisand packaging personnel amecessarilyseparate from the development and
maintenance personnel because their objectivesignificantly different. Measurement analysts
are concerned solely witmprovingthe software process. Software developers’raamhtainers’
concerns includg@roduct generatiorschedules, andosts. It isimpractical toexpect personnel
who mustdeliver a high-qualityproduct onschedule and withibudget to be responsible for the
activities necessary to sustain continual improvement; hehosg functions must be the
responsibility of a separate component.

3.3.3 Technical Support

The technicalsupport componenmaintainsthe information repository,which contains the
organization’s historical databaSéhis component provides essensapportservicesincluding
implementingthe database a&pecified bythe analysisand packaging component. Tégoport
personnel collectata forms fromthe developers andaintainers on a prescribed schedule,
perform datavalidation and verificatiomperations tddentify andreportdiscrepancies, and add
the project data to thieistorical database. Theye alsaesponsible for operatingupplementary
software tools (e.g., codmalyzers) and for preparimgports of theanalysisresults. In addition,
the supporpersonnel archivdata and performall other databasmanagement system (DBMS)
maintenance functions.

SEL-94-102 26

Example:
The Software Engineering Laboratory

Although their measurement roles and responsibildies clearly distinct, the three
componentsmay berganized in different ways within differeatganizations. A large
organizatiormay benefit by creatingeparate, structural components to perform the three
distinct roles of the measurement progransm#all organization with amall project may
simply assigrthe roles tandividual personnel. In some cases, a singtiividual may
performmultiple roles as long as the amount of effort allocated to separate rolearig
identified.

For example,the SEL is an organization of moderatze with approximately 300
software developers and maintainers. The organization developmiamntins mission
support software for th&light Dynamics Division aGSFC. Sincel976, the SEL has
collected data from more than 100 softwdexelopment project3.ypical projects range

in size from35,000 to 300,000 SLOC and require from 3 to 60 staff-years of effort. The
process andoroduct data have beesmalyzed to evaluatéhe impact of introducing
methodologies, tools, and technologmatin the local environment. Imecent years, the
SEL has expanded the scope ofatsivities to includehe study of softwarmaintenance
(Referencel5). Processmprovements have led to documented improvements in the
organization’s products.

Figure 3-2 illustrates the organizationatructure of the SEL. Irthis example, the
technical support personnel who maintain the repository are administratively affiliated with
theanalysisand packaging component lpltysicallylocated with the source ofata.This
structure works well in the SEL for two reasons:

1. The technicakupportpersonnel receive funding frothe samesource as the
analysisand packaging personnel. Developers and maintanersunded by a
different source.

2. Thephysical environment istructuredwith the forms processing, databalsest
computing support, and library facilities collocated with the developers and
maintainers, so the support personnel occupy that same space.

Many alternativestructures would be just asarictional and successful. The important
feature is that thdevelopment and maintenance persoanelnotresponsible foanalysis
and packaging. In addition, SlBhodels and relationshigse affected by the fatitat the
measurement programithin this sample environment is limited ttevelopment and
maintenance of operationalissionsupport softwaré.Organizationghat include other
activities may derive significantly different models. Issues related to theost
considerations shown in thigure are addressed in Section Reference 16 provides
additional examples and details.

5 Although thescope ofthe measurement program includes no data fimtotype development or research
activities, the software personnel do perform such activities as a part of their jobs.

27 SEL-94-102

Source of Data

no R&D)

¢ Development from design through delivery
and maintenance

e Each project manager responsible for
participation in measurement program

e All operational support software (no prototypes,

e Effort less than 2 percent additional overhead

- project development histories
- subjective project information

»

- 200-500 completed forms per week -

- requests for project information

- models (e.g., cost, schedule)
—\-_{raining courses (e.g., Principles of Flight Dynamics)
Analysis and Packaging

¢ Active participation from design through delivery
and maintenance
® Products
- Models
- Training
- Tools
® Funding primarily from NASA
(some contractor funding support)

—y

&

- development status reports
- standard monthly project reports

e

- Processes
- Standards

Technical Support

® Collocated with developers and maintainers
but administratively attached to analysts and
packagers

® Occupies about 500 sq. ft.
® Uses Oracle DBMS
® Two data technicians and two programmers

® Effort about 7 percent of development

- ad hoc database queries

- forms design/

¢ Effort about 4 percent of development L

&

- annual bibliography and collected papers
- database user's guide
- results of special requests

Figure 3-2. The SEL as a Sample Structure for Process Improvement

3.4 Selecting the Measures

Another important step iestablishing a measuremgrbgram is selectinthe measures to be

used. Selected measures ¥l into one or more categoriescluding objective measurédirect

counts, obtained either manually or with twgport of an automated tool), subjectmeasures
(interpretive assessments about the status of the quality or completion of the product), and project
characteristics (factual descriptions of the type, size, and duration of the project). Chapter 4
addresses measures in more detail. When selecting measures, the next rule is the most important:

Make sure the measures apply to the goals.

Measures shouldot beselected just because a publistaedhor has found them useful; they
should directly relate tthe defined goals ofhe organization. Fa@xample, ifthere is no goal to
reduce processor time, it is a waste of time and effort to collect data on computer usage.

SEL-94-102 28

Keep the number of measures to a minimum.

Experiences from successful measurement progvatis NASA suggest that aiinimal set of
measures isisually adequate fobeginning aprogram andsufficient to fulfill all but the most
ambitious goals. Aasicset ofmeasures—which typicallgonsists of data faschedule, staffing,
and software size—is introduced in the next chapter.

This rule—to limit the number of measures and, logplication, the size of the measurement
database—is a corollary of the rule start small, whichsuggestdimiting the scope of the
measurement program itself. The rule shoultbkenliterally: if a single measure is sufficient to
address the organization’s goal, thasilecting data ontwo orthree will provide no added
benefits. For example, if the only goal is to improve quality, only defects should be meassired,;
and schedule data should not be a concern.

Avoid over-reporting measurement data.

Any measurement program can be potentially disruptive to a software project; thenreditysts

must be cautious when providing feedback to development and maintenance personnel. Providing
too much feedback can be just as serious a mistake as prowdempugh. Reporting the results

of analyzing all availableneasuremerdata is a waste dime, because much dfie information

will provide no additional insight. When presented with unnecessary and exchasisgtables,

and reports, software staff and managers may become annoyed and disenchantedalithahe

the measurement program.

Collected data constitute only a snpkt of theoverall improvement program and shoaldiays

be treated as thmeans to a largeand. The tendency to assuthat each set of dateas some

inherent value tohe development andaintenance personnel atioerefore, should banalyzed,
packaged, and fed back to them, must be avoided. Feedback must be driven by a need or directed
toward supporting alefined goal. If no focus has been established the analysis ofcode
complexity, for example, then there will be vedue in—and no appreciatidor—the preparation

of a complexityreport. Such a reposould be disruptive and confusing and could dilute the
effectiveness of the measurement program.

The following commonreportsand graphs are often packaged and provided tdetelopment
and maintenance organization, not because they are needed, but simply because the data exist:

* Code complexity

» Design complexity

* Number of tests executed

» Plots of computer usage

* Charts of numbers of requirements changes

» Profiles of program execution

29 SEL-94-102

* Charts of the time spent in meetings

Each of those measurasy havesome value when used support of amrganizational goal.
However, this type oinformation istoo often reportedbecause it is assumed to inberently
interesting, not because it relates to a particular need or goal.

3.5 Cost of Measurement

Cost is one of the modtritical, yet misunderstood, attributes of a software measurement
program.Many organizations assunthat the cost oimeasurement is so excessivat they
cannotjustify establishing aneasurement program. Otheglaim that measurement can be a
nonintrusive no-costaddition to an organization and will have no impacthmn organization’s
overhead. The truth lies somewhere in between.

Budget for the cost of the measurement program.

Measurement inot free, but it can be tailored 8ize anccost tofit the goals and budgets of any
software organization. A measurement program must be undertaken with the expihetatioan
returnwill be worth theinvestment. If theost is nofplanned inthe organization’s budget, there
will be frustrations, attempts at shortcuts, anfdiked software measurement prograRianning
must incorporatall of the hidden elements dhe proposed effort—elemertsat are oftermore
expensive duringtartup than after themeasurement program becomes operational.hidteer
startup cost is an additional reasorstart small

Planners often incorrectly assume ttied highestost will be to the softwardevelopment or
maintenance organization. Tipart of the overheadxpense, which includes completing forms,
identifying project characteristics, amgeeting with analysts, is actuatlye leasexpensive of the
three major cost elements of the measurement program:

1. Cost to the software projects—the source of data
2. Cost of technical support
3. Cost of analyzing and packaging
The cost of the measurement program also depends on the following considerations of scope:
» Size of the organization
* Number of projects included in the measurement program
» Extent of the measurement program (parts of the life cycle, number of measures, etc.)

NASA experience showthat there is aninimum costassociated witlestablishing andperating
any effective measurement program. The twaal wil increase depending on the extenivtoch
the organization wants, or can afford, to expand the program to addd#ssnal projects, more
comprehensive studies, and broader measurement applications.

The costinformation offered in this section is based on 17 years of experience from organizations
ranging in size from approximatelyp)0 to 500 persongdditional information has been derived

SEL-94-102 30

from measurement programs in larger organizations of up to 5,000 personsuriiber of

projects active at any one time for this experience base has ranged from a low of 5 or 6 projects to
a high ofover 20 projectstanging in size from 5 KSLOC tover onemillion SLOC. Because
measurementosts depend onlarge number of parameters, citing a sirdgdéinitive valuethat
represents the cost ahy organization’s measurement prograninigpossible.However,some

general suggestions can be provided, and organizations can interpret these suggestions in the
context of their own goals and environments.

Generally,the cost oimneasurement to the developmentnmaintenanceroject will notexceed

2 percenbf the total projectievelopmentostand is mordikely to be lesgshan 1 percenfwhich
impliesthat the cosimay betoo small to be measured)he technicasupportelementmayreach

a constant staflevel of from one tofive full-time personnefor data processingupport. The
analysisand packaging element will require sevéulitime analystsand may cost up to
15 percenof the totaldevelopment budgeEor examplethe SEL spends an average of about
7 percent of each project’s total development budget on analysis and packaging.

Figure 3-3 illustrates the costs of the elements of a software measurement program as percentages
of the totalorganizationalcost. Individual costs arediscussed in more detail the following
sections.

204
* Develop models
(processes)
* Analyze results
Mid-Size Organizations * Train staff
(Approximately 100 -500 Persons) « Define

154 Large Organizations I:I ‘ experiments
(Approximately 500 -5,000 Persons) 3

o 107 ¢ Archive results
N
2 * Maintain
5 database
g *QA
N
c -
S)
2
© s
8
=] 44
t e Fill out forms
S) 34 R
S ’ * Provide data 10-15 people
1 6-8 people
<2% <1% 3-7% <2% 6-15% <3%
0
Source Technical Analysis &
of Data Support Packaging

Figure 3-3. Cost of Software Measurement

31 SEL-94-102

3.5.1 Cost to the Software Projects

The cost of measurement should not adohore than 2 percent
to the software development or maintenance effort.

The sméest part of themeasurementost is theoverhead to the development andintenance
organization. This overhead compriskes cost ocompleting forms, participating in interviews,
attending training sessions describing measurement or technology experimemisipizgdto
characterize project development. Althowghrtup costsnay be as high asercent of the
development budget, tlomst of operating aaffective programwill normally not exceed 1 or 2
percent, regardless of the number of active projects within the organization.

Legitimate costs are associatedth introducing the providers afata to a newneasurement
program. However, part of thegher initialcostcan often be attributed to tieefficiencies in an
inexperienced organization’sqgram. New programtypically ask developers anaintainers to
complete unnecessary forms or require excruciating de#ails oflittle value or isnot a part of
the stated goal. Avell-planned measuremegntogram vill never impose a significanbstimpact
on the development or maintenance organization.

3.5.2 Cost of Technical Support

The technical support component of the measurement pgram
may cost from 3 to 7 percent of the total development budget.

Technical support encompasses collecting, validating, and archivimg measuremendiata.
Included in these activitiemre database managemdibtary maintenancegxecution of support
tools, and high-level reporting sbmmary measuremedéata. Thesessential activities must be
planned,supported, andarefully executed. In addition to theost ofpersonnel are theosts of
acquiring andnaintainingdatabase software, support to@adother automateg@rocessingids
(e.g., code analyzers).

In an organization of over 50 manageméathnical, and clerical personnahy measurement
program will require three to five full-time staff members to hatmi@ecessargupport tasks. A
smallerorganization, with perhapmly one project and a pilot measurement prograay, wish
to combine the support effort with configuration managerf@f) or independent QActivities.
Implementation of a separate technical support element may not be cost effective.

Experience within NASA has showthat the cost of theéechnicalsupport formeasurement
programdnvolving 100 to 200 software developersmaintainers is approximatelypércent of
the total effort. That cosihcludes approximatel§ive full-time datatechnicians and database
supportpersonnel, pluthe costs of the DBMS and associated software toolegumgment. For
larger measurement programs with 250 to 600 software personnel, expmdgatesthat only
one additionalfull-time support person is required. Thus, for organizatisite 50 to 600
developers and maintainetBe overheadost isapproximately 6 percent t¢ifie project cost. For
organizations with approximatebp0 to 1,000 software personnel, the overleemtapproaches
3 percent of the project cost or absewen full-timepersonnel added to tlwst of tools and
equipment.

SEL-94-102 32

The costestimates are based on the assumpghiahan organization isctively working on 5 to
15 development or maintenance projects at any one time. The overall cosgeohtisalsupport
componentwill vary significantly depending on theaumber of projects participating in the
measurement program. An organization of 200 or 300 peoplelgatiorking on a single large
projectwill require much lessupport than theame organization with 20 actismallerprojects.
Limited experience with larger organizationsover 5,000 personsdicatesthat thetechnical
support cost iessentiallythe same ador an organization of 500. As ié&ze increases, an
organization tends to collect measurement data at a less detailed level.

3.5.3 Cost of Analysis and Packaging

The cost of the analysis component of themeasurement
program ranges from 5 to 15 percent ofthe total project
budget.

Analysisand packaging is the masitical part of themeasurement program and the nomstly
of the threeelements otost overhead. Without sufficient allocation oeffort to this function,
the measurement program cannot be a success. Packagingubnihation of allmeasurement
activities and the primary purpose for the measurement program.

Key activities associated with this element are
» Design of process studies (determining what is to be measured)
* Information analysis (e.g., analysis of data and synthesis of models)

» Project interaction (clarifying the purposes of measurertrairting developers, providing
feedback to projects)

» Packaging (producing standards, policies, and training programs and capturing
assessments of analyzed processes)

Plan to spend at least three times as much on data analysis and use
as on data collection.

NASA experience showthat the cost othis element in successful measurement programs far
exceeds the combined costs of the other two and is typically about three times the amount that the
software projects spend provididgta. Asuccessful measurement program dictttasthis cost

be recognized and budgeted. Rogasurement progranms/olving 50 t0250 software developers

or maintainersthe cost othis activity has consistently run from approximately 7 tpé&Zent of

the organization’s total budget. Costs are incurred by the researcherdesign studies and
develop new concepts, by the procstsdf responsible for developing and writing standards, and
by all the personnel required fanalyzing, providing feedback, and developing improvement
guidelines. Thanalysisand packaging portion of the measurenoests depends on timeimber

of projects activewithin the organization. Thiggures provided here assume at least 10 active
projects and an archive data from at least 15 projedsailablefor analysis. Withfewer active
projects, the analysis overhead would be smaller than indicated.

33 SEL-94-102

NASA's historicaldata indicate that organizatiosgending betwee$20 million and $30million

for development andnaintenance projects have spent betweemiiibn and $3million for
extensive and matum@nalysisefforts (in fiscalyear 1993 dollars)-or efforts on anuch larger
scale, the measuremesmalysismust necessarily beonducted on a@omparably highetevel,
consequently, the overhead percentage decrsageficantly. Anexpenditure of an equivalent
amount ofanalysisesources, plus a modest increase dukdsize ofthe organization, need not
exceed the 5 percefdvel for measurement programs afy size. Because application of the
measuremerdata is theprimaryreason for the measurement program, adequate resources must
be allocated for this critical measurement program element.

SEL-94-102 34

Chapter 4. Core Measures

Chapter Highlights

CosT

» Reporting period dates
» Total effort
« Effort by development and maintenance activity

!
ERRORS [‘

» Dates error reported and corrected - Test for double value
« Effort to isolate and correct the error X=37 ¥ then

raise Double;

e Source and class of error end if;

- 00— 7

% PROCESS CHARACTERISTICS
 Identification of programming languages
’X Indication of the use of significant processes
% ¢ Description of measurement study goals

“ PROJECT DYNAMICS

« Changes to requirements
» Changes to code

e Growth of code

¢ Predicted characteristics

PROJECT CHARACTERISTICS

Development dates
Total effort

Product size
Component information
Software classification

35 SEL-94-102

measurement program. There isumversal, generally applicable collection of measures
thatwill satisfythe needs and characteristicalorganizations. However, on tlbasis
of the experiences of mature measurement progifamsghout NASA, a set aheasures in the
following five categories wiltypically berequired byanysoftware development amdaintenance
organization:

1. Cost

T his chapter describes set of coremeasureghat any organization can use toegin a

2. Errors

3. Process characteristics
4. Project dynamics

5. Project characteristics

Although organization®eginning a measuremeptogrammay want to use the core set as a
baseline, thewill soonfind that additional information is required watisfy their specific goals
and that some of thecore measures ar@ot required. Each organization should use those
measureshat reflect its own goals. As its measurement program matures, the organmttion
recognize which measures support those goals and which provide no added value.

The recommendedore measures in each of the categor@dibit the following important
attributes. They

» Address the three key reasons for measurement
1. Understanding
2. Managing
3. Guiding improvement
» Support both software development and software maintenance activities
* Are easy to collect and archive
» Are based on the experience of mature NASA measurement programs

The following sections provide further information on the core measures.

4.1 Cost

Cost is the mostiniversal andcommonly accepted measui@ understanding antianaging
software processes and produ@ensequentlygost data represent the messentiapart of any
measurement program. Although many development organizations deatithe cost dataust

be extensive and detailed tapture theoverall cost characteristics of a software project
adequately, theost datashould actually be easy tapture. If a programmer needs more than a
few minutes each wedn the average) to reconis orher effort, then théorms require too
much data. Aslong as the managers are aware ofttital amount of effort required for the
software projects, an organization ¢ a significanamount ofinsight by observinghe trends

SEL-94-102 36

over time. Thesimplest, yet most criticatostmeasure is theecord of the total expenditures for
a project.

4.1.1 Description

Collect effort data at least monthly.

Every project mustapturestaff effortdata on a consistergeriodic basis. A monthly schedule is
recommended, atrainimum; however manymajor NASA measurement progracepture effort
databiweekly or even weeklyThe higher frequency requires little additiowalrk and provides
more project characterization detalil.

Clarify the scope of effort data collection.

The scope of the effort datallection depends on the organization’s goals. Each organization
must determine preciselyho will supplyeffort data, at what poirduring the softwaréfe cycle
measuremenyill begin, and whewatacollection will terminateTypically, effort data must be
collected forall personnel who charge theéime tothe software projecgpecifically, technical,
management, secretarial, and publications staff.

For everydata reporting period, eaatdividual mustminimally report the totahumber of hours
of effort and a breakout of the number of hours per activity (e.g., design, code, test, or other).

A decision concerninthe reporting otinpaid extra hours of effort must be based on whether the
intent is to measure the actual effort expended or the actual effort charged. Some organizations
maintain separate records of unpaid overtime hours.

Within the SEL,every programmer and every first- or second-line manager provide d=fart
Data collection starts when the @tional requirements have been completedthedoftwardife

cycle begins withthe requirementanalysisphasé For developmenprojects, datacollection
continues untilthe system is turneaver for operational use. Fonaintenanceprojects, data
collection starts at thebeginning ofthe operations phase and continuesl the analysts
determine that no additional valwell be gained from further collection. Eacghaintenance
project is judged on its own merits. Sommay provide data for lyear only, whereasthers
provide data until the software is retired.

4.1.2 Data Definition

Whenthe measurement program is fiestablished, personnel fraime analysiscomponent must
definethe activities to ensure clarity and internal consisteRogcus should be on usirgcally

6 Forall five categories omeasures, the SEL begins to capture data no etiréiarthebeginning of thesoftware
requirements analysis phasystemrequirements definition is normally performed by a different organization
from the one that develops the software.

37 SEL-94-102

developed definitionfor the activitiesExcessive time shouldgot bespent trying to be consistent
with outside organizations.

All project personndk.g., programmersnanagers, QA staff, CM staff, and testers) provide the
data listed inTable 4-1. Additional resource data on the documentation effort (total hours by
publications) andhe clerical effort (total hours charged ®ecretariasupport)may beextracted
from project management accountingcords, adong as there is aefinition of scope and
characteristics. The data must be consistent from project to projecthan@tl provide an
accurate history of the cost required to produce and to maintain the software product.

Table 4-1. Data Provided Directly by Project Personnel

Data Descriptions
All Effort
Date Date of the end of the reporting period
Total effort Total hours charged to the project during that period

Development Activity Only

Hours by development activity Predesign

Create design

Read and review design
Write code

Read and review code
Test code units
Debugging

Integration test
Acceptance test

Other

Maintenance Only

Hours by maintenance class Correction
Enhancement
Adaptation
Other

Hours by maintenance activity Isolation

Change design

Implementation

Unit test and system test
Acceptance test and benchmark test
Other

The SEL Personnel Resources Forms (see Figures A-5 and Appendix A) andhe Weekly
Maintenance Effort Form (see Figure A-E3gexamples of formased to capture effort data for
development and maintenangeojects, respectively. Programmers and managers typically
complete a form everyveek. Bothforms provide space for recordirigtal hours and the
distribution of hours by activities. To reduce questions and confusiordefimitions of the

SEL-94-102 38

activitiesare supplied orthe forms. Other organizationgy use differentefinitions as long as
they are applied consistently throughout the organization’s measurement program.

Figure 4-1 summarizeghe life-cycle phases, sources, amfi@equency forcost datacollection.
Typically, organizations separate the costs of development and maintenance activities.

Requirements|Requirements| Preliminary Detailed Coding and System |Acceptance| Operation and
cosT Definition Analysis Design Design Unit Testing Testing Testing Maintenance
Phases: \ | |
Source: Managers, programmers, and accounting records
Frequency: At least monthly; more frequently if needed

Figure 4-1. Cost Data Collection Summary

4.2 Errors

Error data make up the second most important category ohwasures. A better understanding
of the characteristics of software defectiégessary tsupport a goal ohigher quality and
greaterreliability. Error datamay minimallyinclude onlycounts of defects detectetliring a
specific life-cyclephase; at thether extremeerror datamayinclude detailed descriptions of the
characteristics of the errors andormation on wherghe errorcame from,how they were
found, and how they wemrrected. Théevel of detailmust be driven byhe goals and needs of
the particular organizationThis section recommendsore error measures based on those
collected within a successful measurement program in a medium-sized NASA organization.

4.2.1 Description
The core error measures consist of the
» Date the error was found
» Date the error was corrected
» Effort required to isolate and correct the error
» Source of the error
» Error class

Whenthe measurement program is fiestablishedthe measurement analysts maesine the
scope of the error reporting activity.

Collect error data only for controlled software.

Error datashould be capturednly after a unit of software has been placed under configuration
managementontrol. This recommendation, which is based on 17 years of experraageseem

39 SEL-94-102

counterintuitive. Howevemntil CM checkout and checkiprocedures have be@stablished as
prerequisites fomaking changes;onsistenterror reporting cannot be guarante®dthin the
SEL, aunit is turned over for configuration contrahly after it has beewsoded OtherNASA
organizations (e.g., JPL) have reporgghificant improvements from collectirand analyzing
data about defects detected and corredtgthg formal inspections of requirements documents
(see Reference 26).

Do not expect to measure error correction effort precisely.

Programmers focusing on their technical activitiesy not beable toreport the exacamount of
time requiredor a particular change. Forms should allow them to estithatapproximatéme
expended in isolating and correcting an error.

4.2.2 Data Definition

After completing a software change, a programsabmitsthe appropriate change form with the
data shown in Tablé-2. Achange form is required whenever a controlled software component is
modified, whether onot thedetection of an error necésged the change. Experience has shown
that the process of reportirguch changes enhances configuration managemernthandhe
information proves useful in modeling the dynamics of the software in an organization. In addition
to the measurealready cited, a maintenance change form mnakidethe type ofmodification.

As always, it is important to focus locally when defining the error classes.

Table 4-2. Change Data

Data Descriptions
All Changes
Date error reported Year, month, and day
Date error corrected Year, month, and day
Source of error Requirements, specification, design, code,

previous change, other

Class of error Initialization, logic/control, interface, data,
computational

Effort to isolate error Approximate number of hours
Effort to implement Approximate number of hours
change

Maintenance Changes Only

Type of modification Correction, enhancement, adaptation

SEL-94-102 40

The SEL Chang®&eportForm and theMaintenance ChangeeportForm (see Figures A-1 and
A-4 in Appendix A)are examples of formsised to capture error data fdevelopment and
maintenanceprojects, respectively. In either case, a single form is useeptot both software
errors detected and softwachanges taorrect the errors. Programmers asdy one form to

report one error that requires changes to multiple components.

Figure 4-2 summarizes the life-cycle phases, sources, and frequency for error data collection.

Requirements|Requirements| Preliminary Detailed Coding and System [Acceptance| Operation and
ERRORS Definition Analysis Design Design Unit Testing Testing Testing Maintenance
y!
Phases: \ | |
Source: Programmers and automated tools
Frequency: Whenever a controlled unit is modified

Figure 4-2. Error Data Collection Summary

4.3 Process Characteristics

Do not expect to find generalized, well-defined process measures.

Focusing on the process characteristics category of software meaBwssinvestigation into

the effectiveness of variousoftwareengineering methods and techniques. Lookingratess
characteristics also provides insight imthich projets use related processes and can thus be
grouped togethewithin the measurement program to dervedels and relationships or to guide
improvements.

Because fewprocess features acensistently defined and can be objectively measuredgdesv
measures are recommended tims category. Rather than capturirextensive process
characteristics, it is suggested tkame basic information be collectadout thedevelopment
process used for the project being measured.

4.3.1 Description
The recommended core process measures are limited to the following three:
1. Identification of development language(s)

2. Indication of the use @pecificprocesses or technolofg.g., theCleanroom method or a
particular computer-aided software engineering (CASE) tool]

3. Description of measurement study goals

Common descriptions of measures dot exist for suchfundamentalsoftware engineering
processelements as methodology, policies, automation, and management expertise. Therefore,

41 SEL-94-102

recommendinghat such measures be includedtie core set is natseful. Measures such as
these must be defined and analyzed locally for consistency with the organization’s goals.

Do not expect to find a database of process measurements.

Detailed process descriptions cannot diered in a database. Instead, important process
information is often provided in papers amgborts. Forexample, if an organization is studying
theimpact of using different testing strategitee analysts must capture the detaitdédrmation
about the results of applying different techniques and report on the results.

Understand the high-level process characteristics.

Before attempting to capture advanced process measurdaitantin organization musave a
clear understanding of tleere procesmeasures. Experience withime SELhas showrhat the
most important process characteristic is the choiggagramming languagéhe availability of
this information may provide further insight during the analysis of other measurement data.

4.3.2 Data Definition

Table4-3 summarizeshe core processharacteristics measures. Figdr8 summarizeshe ife-
cycle phases, sources, and frequency for process characteristics data collection.

Table 4-3. Process Characteristics Data

Data Descriptions

Development language Language name: percentage used
Language name: percentage used

Important process characteristics One-line textual description (e.g.,
(if any) “used Cleanroom”)
Study goals Brief description of the goals and

results of the measurement study
associated with the project

SEL-94-102 42

PROCESS Requirements Requirements| Preliminary Detailed Coding and System |Acceptance| Operation and
CHARACTERISTICS Definition Analysis Design Design Unit Testing Testing Testing Maintenance
Phases: AN
Source: Analysis and packaging personnel
Frequency: At the completion of the development phase

Figure 4-3. Process Characteristics Data Collection Summary

4.4 Project Dynamics

The next category of core measures—progctamics—captures chang@e requirements, to
controlled components, and in the estimates for completion) during the solfeacgcle.
Experience has showhat such information aids management and improves understanding of the
software process and product.

4.4.1 Description

The coremeasures in this category characterize observed chartbesproject requirements and
the product code, asell asupdated estimates of tHimal project characteristics (see Section
4.5). These measures consist of

» Changes to requirements

» Changes to baseline code

* Growth in baseline code

» Predicted project characteristics

Requirements changes represent the ovaedlility ofthe software requirements and can be used
effectively to managthe development effort and iimprove understanding t¢fie characteristics
of the software problem definition in the local environment.

Records of changes to the code andgtioevth of the code providasight intohow the various
phases of thdife cycle affect the production of software, the most tangipleduct that a
development process generates. Change measuresefuiein managing ongoing configuration
control processes, as well as in building models of the development process itself.

The measures of predicted project characteristics are excellent management aids and are useful for
studyingthe cause and effect of changeswel as process and probleroomplexity. The
characteristics should be captured on a regular basis, at least monthly.

4.4.2 Data Definition

The Project Estimates Form (see Figure A-&ppendix A) is an example of a forosed to
provide predicted project characteristics atstaet of the projecand periodicallythroughout the
life cycle. Table4-4 summarizeshe core projealynamicsmeasures, and Figud#ed4 summarizes
the life-cycle phases, sources, and frequency for project dynamics data collection.

43 SEL-94-102

Table 4-4. Project Dynamics Data

Data Descriptions

Changes to requirements Count and date of any change
made to the baselined
requirements specifications

Changes to code Weekly count of the number of
software components changed

Growth of code Biweekly count of the total
number of components and total
lines of code in the controlled
library

Predicted characteristics Monthly record of the estimated
completion dates and software
size

Dates End design

End code

End testing
System completed

Size Total components
Total lines of code (new, reused,
modified)

Effort Total staff months (technical,
management, support services)

PROJECT Requirements|{ Requirements| Preliminary Detailed Coding and System [Acceptance| Operation and
DYNAMICS Definition Analysis Design Design Unit Testing Testing Testing Maintenance
Phases: \ |
Source: Automated tools and managers

Frequency: Weekly, biweekly, or monthly (see Table 4-4)

Figure 4-4. Project Dynamics Collection Summary

4.5 Project Characteristics

The coremeasureshat characterize the completed project constitute anefisentiapart of the
measurement program. Organizations deneeels and relationships fropnoject characteristics
in the historical database. Withoutbasic description athe overall softwareproject effort, it is
difficult to apply the other measurement information in a meaningful manner.

SEL-94-102 44

4.5.1 Description

The project characteristics can be broken down into five categories of core measures:
Development dates

Total effort

Project size

Component information

ok 0w Ddp PR

Software classification

Use simple definitions of life-cycle phases.

The important dates are theginningand the end of eadife-cycle phase and thénal project
completiondate. If the organization igsing astrict waterfalllife cycle with nonoverlapping
phases, then the end ohanterminal phase is defined the beginning ofthe subsequent phase.
When a different life-cyclanethodology is applied, the organizatiall have to adjust the
structure of the project characteristdata. Each organization mudgtermine how it wants to
capturedetails ofthe key phase&lateswithin the softwardife cycle. Thesimplestapproach is to
use theclassical phase definitions ofstandardife-cycle methodology. However, as long as an
organization has its own consistamnernal definitionsthere is naverwhelmingreason to adopt
an external standartultiple releases can ldecated as multiple projects or as a single project
followed by maintenance enhancements.

The total effort expended on the projetiould be divided intdvours used by programmers,
managers, ansupportservices. At the conclusion of the project, titkals should beletermined
from accounting information oanotherofficial source. Thesum ofthe effort dataollected
during the development omaintenanc@roject should be compared with teue obtainedrom
the alternative source to cross-check the accuracy.

The coresize measureare the totasize ofthe software produ@nd the totahumber of
componentwithin the productiNASA experience shows thatchiving additional detailabout
the origin of the code (e.g., whether it is new, reused, or modified) can lead to useful models.

Use lines of code to represent size.

NASA programstypically measure softwarsize in terms ofines of code. Some authorities
recommendother size measurefe.g., function points (see Referen&&)]. However, no other
measure is as well understood or as easy to collect as lines of code.

This guidebook also recommends collecting size and origin informfaticsoftware components

and defines a software component as a separately compilable unit of software for the project being
measured. Some organizatialefsinecomponents as subprograms or subsystetmsh is fine as

long as the organizaticeppliesthat definition consistently and derives usefesults. The SEL

45 SEL-94-102

captures thdasic informatiorfor each separateompilable unit ofsource code and has found
that the overhead required to extract thirmation using arautomated tool igrivial. As a
result, programmers can be freed from expending additional effort in providing that information.

The final category of project characteristcse measures is softwaotassification. This measure
is abstract and olimited value.Consequently, most organizations adyvised to spendnly
limited effort collecting andanalyzing classificationdata. Nevertheless, several NASA
organizations have found a high-level classification schemeliotbeadequate angseful. These
organizations use three broadly defined classes:

1. Business or administrative applications
2. Scientific or engineering applications
3. Systems support
Other organizations may want to record more detailed classification data, such as
* Embedded versus nonembedded
* Real-time versus nonreal-time

* Secure versus nonsecure

4.5.2 Data Definition

The recording of project characteristics daga often besubstantiallyautomated taninimize the
burden on the development andhintenance organizatiobates and effort, foexample, are
normally available from managemextcounting reports; automated tobisquently can be used
to reportsize and component information, athe time and effort needed to indicateftware
classification is minimal. Table 4-5 summarizes the project characteristics data.

No universallyaccepteddefinition existsfor the starandstoptimes of various phases, such as
when a projecstarts owhen a design ends. Experiendgéhin NASA has led tdhe use ophase
dates as follows:

» Start of software developmentlelivery of system requirements documents
* End of requirements analysiscompletion of specifications review

* End of desiga-completion of design review

* End of coding—completion of code and unit test

* End of testing—delivery to acceptance testing

» End of developmentdelivery to operations

SEL-94-102 46

Table 4-5. Project Characteristics Data

Data

Descriptions

Dates

Phase start dates (year, month, and day)

Requirements analysis
Design

Implementation
System test
Acceptance test
Cleanup

Maintenance

End date Project end

Effort

Total hours Project total
Management personnel
Technical personnel
Support personnel (e.g.,

publications), if applicable
Size

Project size (lines of code)

Other (count)

Delivered

Developed
Executable
Comments

New

Extensively modified
Slightly modified
Reused

Number of components
Pages of documentation

Component information (for each component)

Component size (lines of code)

Component origin

Total
Executable

New

Extensively modified
Slightly modified
Reused

Software classification

Business/administrative
Scientific/engineering
Systems support

a7

SEL-94-102

The effort data, compiled at theonclusion of the project, are used st of thehigh-level
summary informatiorfor the project. Thenformation representthe total cost of the project
broken down among developers, managers, and support services.

Table 4-5 lists several measurder lines of code. Consensusay never be reached on what
constitutes dine of code. Therefore, téacilitate various forms of comparison aadalysis, this
guidebook recommends recording multiple values. The core measures include counts of

» Total lines delivered-every logical line, including comments, blanksecutable, and
nonexecutable

» Developed lines-total lines with a reuse factor

» Executable statementdotal number of executable statements

» Comment lines-total number of lines containing only comments or blanks
The SEL captures source lines of code in four categories:

1. New—code in new units

2. Extensively modified-code for reused units in which 25 percent or more olirtaewere
modified

3. Slightly modified—code for reused units imhich fewerthan 25 percent of theeswere
modified

4. Reused verbatim-code for units that were reused with no changes

For estimation purposebnes of codeare ofterclassifiedinto two categories thatombinenewly
written andextensively modified units asew code andslightly modifiedand verbatim code as
reusedcode. Consequently, the SEtelationships (see Reference 9) for estimating developed
lines are

FORTRAN developed lines = new lines + 20% of reused lines
Ada developed lines = new lines + 30% of reused lines

(See Sections 2.2.1 and 6.1.2 for more discussion of developed lines of code.)

Specify which software is to be counted.

It is important to bespecific about which software is to beancluded inthe size counts. For
example, it is usuallyappropriate to exclude throw-awgyrototypes, testharnesses, and
commercial off-the-shelf (COTS) software from the reported totals.

Component information can provide insight into the overall development characteristics. Although
the total amount oihformationmay beextensive, it should be easy to compileh&tconclusion

of the project and can be almasimpletely retrievedia automated software tools such as code
counters, auditors, or analyzers.

SEL-94-102 48

The Project Completion Statistics Form (see Figure AAppendix A) is an example of a form
used for collecting project characteristicshe completion of a project. Figu4e5 summarizes
the life-cycle phases, sources, and frequency for project characteristics data collection.

PROJECT Requirements|Requirements| Preliminary | Detailed Coding and System |Acceptance| Operation and
CHARACTERISTICS Definition Analysis Design Design Unit Testing Testing Testing Maintenance
Phases: VAN
Source: Automated tools and managers
Frequency: At the completion of the development phase

Figure 4-5. Project Characteristics Collection Summary

49 SEL-94-102

Chapter 5. Operation of a Measurement Program

Chapter Highlights ||

DEVELOPMENT AND MAINTENANCE

* Providing data
« Participating in studies

TECHNICAL SUPPORT

e Collecting data
- Interface with data providers
- Definitions
« Storing data and assuring data quality
e Summarizing, reporting, and exporting data

ANALYSIS AND PACKAGING

» Designing studies
* Analyzing data
e Packaging the results
- Policies and standards
- Training
- Automated tools
- Reports
- Updates

51 SEL-94-102

operation. Chapter 3 introduced the three organizational componentseaisarement

program: development and maintenance, techsaiggbort,andanalysisand packaging.
After briefly describing mechanism®r collecting projectiata, this chapter expands on the
operational responsibilities of those three components.

I I aving established a measurement progriémm,organization mushift its emphasis to

Figure 5-1 illustrates that mechanisnfigr datacollectionfall into the threeprimary categories
listed below. Each category provides a particular type of data and reqsiesifec interface
between pairs of organizational components.

1. Printed forms—Fhe formsare designed by thanalysisand packaging component,
completed by the development amdintenance component, and submitted directly to the
technical support componentAll forms requirethe submitter to providéentifying
information, such as the proje@me the teanmember’'s name, arttie date. Iraddition,
each type of form is designed to provide some of the medbatssatisfythe goals of the
measurement program. Some formaguest both objectivdata (directly observed) and
subjective data (based on opinioA)l requireonly short answers or thselection of
options from a checklisAppendix A includes a samps$et of datacollection forms used
in the SEL anddesigned to provide the measurendgiia stored in the SELlsistorical
database. An organizati@stablishing a measuremgambgram can use these forms as a
starting point in designing its own set of organization-specific forms.

2. Automated tools-Some data can be collected automatically and unobtrusively by software
tools. Forexample, code analyzers and compilers caunt lines of code; operating
system accounting packages csupply data about processor and tool usage; and
organizational accounting systems ¢gpically report hours o&ffort by interfacingwith
the time card system.

3. Personal interviews-Some information can beapturedonly duringpersonal interviews.
Interviews ardypically used to obtain subjective informatiabout project status and to
verify preliminary results of data analysis.

Measurement Data

Figure 5-1. Three Data Collection Mechanisms

SEL-94-102 52

Occasionallytheremay beother procesandproductinformationsources that do ndall neatly
into one of the three categories. fExample, personnel often hawsights duringdocument or
code reviewsAny informationthatcan be useful withithe organization’s measurement program
should be exploited.

Figure 3-1 illustrates the operationatelationships amonghe three components of the
measurement program.

5.1 Development and Maintenance

Personnel whos@rimary responsibility is developing or maintainisgftware mustnot be
burdened wittheavy measuremeptogram duties.The measurement program must be designed

so that it is deemed to be a help, not a hindrance, to development and maintenance personnel. The
operational responsibilities of the development and maintenance component are

* Providing data

» Participating in studies

5.1.1 Providing Data

Project personnel amesponsible for completindataforms that should have been designed for
simplicity. At project initiation, the project characteristics (discussed in Chapter 4) are provided to
establish a baselin@hroughout thdife of the project, measures must be provided on a regular
schedule, as agreed upon by the analysts and managPossilblythe most important data to be
provided by the development team are the acclinaeroject statistics (see Figure A-7). These
data are often overlooked in an immature measurement program.

The process fosubmitting completed forms must bqually simpleDevelopers andhaintainers

must be able to deliver forms to a specified, convenient location or hand them to a designated
individual and then forget about them. A representative ofdblenicalsupport componentiill

be responsible for collecting the forms and initiating the data entry process.

Occasionally, developers and maintairems asked to meet with thealysts. Althougtvitally
important, these meetings must lm@ef and well planned sahat they do not interfere with
development andlelivery schedules. Meetingeay befeedback sessions for the purpose of
verifying preliminarydataanalysis, interviews tgather additional project characteristiizga or
subjective information, or training sessions to reinfoineeproper use apecificprocessebeing
applied by the developers.

7In most organizations, the managers of thevelopment organization will continue to be responsible for
collectingandapplying certain data needém ongoing program management activities without impact from the
analysts. Somdatacollected in support afarned value analysis or plannestsus actual budget information,
for example, will continue to be collectaddanalyzed by manageand theirproject control support personnel.
The role of the measurement analysts isptovide accurate modeland relationships tsupport those
management activities.

53 SEL-94-102

5.1.2 Participating in Studies

The analystsnay ask the developers anthintainers to participate e experimental use of
some process, techniquepl, or model hat is not part of therganization’s standard practice.
Such studies sometimes necessitladeuse of neiorms andtypically require thatdevelopment

and maintenance personnel attend briefings or a training session on using the new process.

Most projects experience little, if angrocess changdriven bythe analystsFor these projects,
training is typically limited to discussions oéw forms and newata reporting agreements. For
projects that undergsignificant process changes, howevégining sessiongare important to

ensure thatlevelopment and maintenance personnel thoroughly undetseamg¢w process and

fully agree that the study supports the organizational goals. The study must be a cooperative team
effort: analysts must provide regular feedbaclkntdrim results, and developers oraintainers

must contribute their insight regarding the value and relevance of those results.

When development and maintenance persopasicipate in such studies, they shoaldays

receive feedback from the analysts. At feedback sessions, developers and maintainers also have an
opportunity to reportheir impressions ahe degree of success derived fromitim@vation and

to discuss any difficulties experienced in applying the new process.

5.2 Technical Support

The primary operational responsibilities of the technical support personnel are
* Collecting data
» Storing and quality assuring data

* Summarizing and reporting data

5.2.1 Collecting Data

Satisfactory collection ofdata by thetechnical support component depends onclearly
established interface witlhe development andaintenance component and cearly defined
terms and concepts provided by the analysis and packaging component.

Although many organizationgput a greatleal of effort into automatindata collection, many
years of experience have led to the following rule:

Do not expect to automate data collection.

Attempts to automate the datallection process should bmited. Because routinepanualdata
collection efforts add an overheadanily 1 to 2percent (see Referent8), automatiormay not
result in acostsaving. In practice, extensive efforts to devedapomated toolsnay actually
increasecost to the totabrganization. It is more important to ensure that the amount of data is
driven by specific organizationgbals (which Wi also minimize the amount required) artlat

the data collection process is well defined and operationally smooth.

SEL-94-102 54

Regardless of theize ofthe automated datllection effort, it is essentidhat management
communicate withthe developers andaintainersabout which parts of the process will be
monitored electronically.

Interface With Data Providers

Technicalsupportpersonnel must ensutkat members othe management and technical staffs
within the development andaintenance component understand tlesiponsibilities withrespect
to furnishingthe selected project measuréschnicalsupportpersonnel must also communicate
with the providers of thelata to ensure tha&veryone understands tbetails ofthe collection
requirements, for example,

* Which personnel are responsible for collecting and furnishing project measures
* How frequently the collection will occur
* Which portions of the software life cycle will be reflected in the data

* What type of personnel (management, technical, or administrative) will be included in
level-of-effort measurements

Make providing data easy.

Personnel withinthe technical support component mushake furnishingdata aspainless as
possiblefor development anchaintenance personnel teduce the chances for aggravation and
resentment on theart of those data providemRublishing a list of technicalupport contacts can
make it easyor the data providers to ask questionsleal with measurement problems. Making
it obvious where to deposit the ddtams and collecting them promptly to emphasize the
importance of providing the forms on schedule are also useful tactics.

Definitions

To ensure that the data provided bBesed on a consistent understanding ofntle@asurement
terms and conceptsupportpersonnel must supply concise, clear definitionthéalevelopment
and maintenance personnel. Ithe responsibility ofthe analysisand packaging component to
write definitions that are consistentvith organizational goals anlbcally understoodideas;
however, the data collectors aesponsible fofurnishingthe definitions tothe data providers.
The importance of focusingcally, rather tharadhering to arbitrary industry-wide conventions,
cannot be overemphasized.

55 SEL-94-102

5.2.2 Storing and Quality Assuring Data

The second importamésponsibility ofthe technicalsupport component is storagehagh-quality
data. For project data to be usgftectively insupport of the goals of measurement program,
they must be complete and accurate as defined by QA procedures and readily available.

Data Storage

To be readily availablgroject data must b&tored in aronline databaseThis requirement leads
to the next rule:

Use commercially available tools.

Using a COTSDBMS to support theorganization’s measurement program hghly

recommended. The time and effort required to devalspom toolswill outweigh theibenefits.
A relational DBMS will provide the most appropristgpport for dataetrieval ancanalysis using
a variety of table combinations and user views. Spreadshized sequential filegnd even

networked orhierarchical DBMSsare simply inadequate. See Reference 19 fdetaled
description of a mature measurement database using a commercial DBMS.

Data Quality

The quality of the stored datmust also be considered. From the perspective okupeort
component, data quality assurance is a two-step process:

1. Verification of source data-Discrepancies must be tracked to the source and corrected.
This step includes checking that the

a. Dataforms have been submitted aade complete (i.eall required values are
provided).

b. Values are of thepecified type(e.g., numeric fields donot contain non-numeric
values).

c. Values arewithin specifiedranges (e.g., thaumber of hours of effoper day per
person is never greater than 24).

d. Values are reported on the prescribed schedule.

2. Verification of data in the databaseéiter the values have beeentered into the
database, a second check is performed to verify that the entries match the source value.

An organization with a mature measurement prograay be able tose automated tools that
allow developers tenter datadirectly intothe databasea onlineforms, therebyeliminating
paper forms anthe manual QAprocess. Althouglkhis approacimayseem ideal, experience has
shown that it ofterleads to unreliablelata andthat the cost of ananualprocess igelatively
small.

SEL-94-102 56

Despite the quality assurance steps, the next rule still applies:

Expect measurement data to be flawed, inexact, and inconsistent.

The collection and verificatioprocesses aréllible, and some dataill be incomplete and
imperfect. In addition to thguality assurance activities performed tine technical support
personnel, the analystslwsubsequently have to determite accuracy angsefulness of the
data by cross-checking, back tracking, and general qualitative analysis.

5.2.3 Summarizing, Reporting, and Exporting Data

Technicalsupportpersonnel are alsesponsible for producing and distributireportsand data
summaries talata users irall three measurement program compone@tasionally, they are
also responsible for exportingw data taexternal organization®Reportscan be tabular or
graphical, printed or displaye@ummaryreports aredesigned to highlighparticular trends or
relationships.

Not all reports are generated by the suppersonnel, howeveHigh-leveldataanalysisreports,
prepared by thanalysisand packaging component, are discussed in the next section. Routine
management reports of project control information remain the responsibility of management.

Many of the raw data ansummaryreports are generated on a regudanedule. Theseeports

range from single-projesummariesocused on a particular data typenmaltiple-project roll-ups

that provide high-level statistics in a format compact enouglfadiitate project-to-project
comparisons.Support personnel distribute thoseeports to development and maintenance
personnel to provide feedback on project measures. Analysis and packaging personnel also use the
reports to identify projects and data to be used in studies and model generation.

Figure 5-2 provides aexample of a regularly schedul&doject Summary Statisticsreport,
showing actuatlata for projects in &lASA organization with a mature measurement program.
The reportalso contains several questionable entfieg., 0.0 hours for support where there
probably should be a positive value) and illustrétesrule thatlatamay beflawed, inexact, or
inconsistent.

The technical support component also generates some of the raw dstanarayreports on an
ad hocbasis, agequested by users of the data. Requestsgdecific data onspecific projects
come from both the development am@intenance component atite analysisand packaging
component. Such reporddso include low-levellatadumps used bgupportpersonnel during the
data verification process.

A relatedresponsibility ofthe support component pseparing measuremedata for export to
another organization. Sharirgdpta acrosslomains and interpretindata out ofcontext are
normally not meaningful, agautioned in the “focu®cally” rule. Nevertheless, exporting data to
another organizatioaccasionally makes senger example the organizatiomay intend to use
acquired data to support thestablishment of it®wn measurement program. In addition to

57 SEL-94-102

Project Summary Statistics

9/13/93 07:23:39 Project Criteria : ALL

No. of No. of Extensively Slightly Technical Support

Sub- Compo- Total New Modified Modified Oold No. of & Mgmt Services

Project Status systems nents SLOC SLOC SLOC SLOC SLOC Changes Hours Hours
PROJECTA INACTIVE 14 132 15500 11800 0 0 3700 2670 17715.0 1774.0
PROJECTB INACTIVE 5 224 16000 14100 0 0 1900 213 5498.0 11.0
PROJECTC INACTIVE 2 175 34902 34902 0 0 0 413 7965.3 0.0
PROJECTD INACTIVE 2 415 41829 40201 450 1044 134 544 32083.4 4407.6
PROJECTE INACTIVE 40 292 50911 45345 0 4673 893 1255 12588.0 1109.0
PROJECTF INACTIVE 20 397 61178 49712 0 10364 1102 221 17039.0 3056.0
PROJECTG INACTIVE 1 76 8547 8041 0 446 60 307 2285.0 0.0
PROJECTH INACTIVE 11 494 81434 70951 0 0 10483 1776 17057.0 1875.0
PROJECTI INACTIVE 11 267 72412 55289 1879 4184 11060 427 13214.6 1365.8
PROJECTJ INACTIVE 14 930 178682 141084 16017 13647 7934 1494 49930.5 4312.9
PROJECTK INACTIVE 4 322 36905 26986 0 7363 2556 412 12005.0 1524.5
PROJECTL INACTIVE 6 244 52817 45825 1342 1156 4494 344 6106.3 0.0
*PROJECTM INACTIVE 0 0 0 0 0 0 0 0 19208.9 3612.5
PROJECTN ACT_DEV 0 0 0 0 0 0 0 0 59.0 0.0
PROJECTO DISCONT Incomplete data for this project
PROJECTP INACTIVE 11 278 26844 24367 0 2477 0 1177 10946.0 967.0
PROJECTQ ACT_DEV 0 0 0 0 0 0 0 0 24662.2 3739.2
PROJECTR INACTIVE 34 392 25731 25510 0 0 221 124 1514.0 0.0
PROJECTS ACT_DEV 0 0 0 0 0 0 0 0 0.0 0.0
* Project data are not final

Figure 5-2. Project Summary Statistics

issuing acaveat about the danger of misinterpretatsupportpersonnel must sanitizee data
before export to preserve tlgenfidentiality ofthe data providerSanitizingthe dataequires
eliminating names of individuals and substituting generic project namie fanemonicsised to
identify projects within the local environment.

5.3 Analysis and Packaging

Analysis and packaging responsibilities consist of
* Designing studies
* Analyzing project data
» Packaging results

Theanalysisand packaging component has the heaviest buvitlein the measurement program.
The analysts must first design measurement studies to colleahalydeproject data in support
of the organization’s procegsiprovement goaldNext, they must use thdata to develop and
maintain organizational models, such @sst estimation models anérror profiles, and to

SEL-94-102 58

determine thémpact of new technologies, such as object-oriented design or code reading, on the
organization Finally, they must provide the derivedformation tothe project organization in a
useful form, such aguidebooks, tools, antlaining courses. Thanalysisand packaging effort
should always bé&ransparent to the development andintenance projects providinige data.
Developers have a right to understamddy theyare providing the data. Moreover, @ear
understanding of the connection betweendamthey provide and thenodels andyuidelines
produced by the analydtsads to higher qualitgroject data and khigherdegree of confidence in

the resulting products.

By analyzingand packaging measuremeata, thesgersonnelsupport the three reasons for
establishing a measurement program:

1. Understanding—Analystsuse routine data from the careeasures tduild models and
relationships and to characterize the overall software processes and products.

2. Managing—Although the analysts doot play anactive role inmanagingthe software
development and maintenanpeojects, they providenformation and models to the
development and maintenance personnel to improve the quality of project management.

3. Guiding improvemenrtEach project provides the analysts an opportunity to study the

effect of a change and learn something from it. The goals for collsp@oific measures

are clearly defined inprocess study plans. These studies can range in dowope
straightforward validation of the current organizational models to controlled investigations
of the impact of introducing a new methodology. Data from projectssimiilar goals are
analyzed and synthesized pooducemodels and to understartde impact of process
changesBeneficialnew technologies and organizational processpanductmodels are

then packaged for use by the projects.

5.3.1 Designing Process Improvement Studies

On thebasis ofthe overall goals ofthe organization and the characteristics ofiritvidual
projects, theanalysts, working withhe project leaders, prepgansthat define specific study
goals andpecifythe data to be collecteHigure5-3 provides awutline of a process stughan.

In some cases, analysts prepare detgileds for projects participating in th@easurement
program. In most cases, however, significant changes will bproposed, and the studyals

will be primarily to refinethe understanding of the software process or product; routine
measuremerdatawill be sufficient, and no training will be needddany ofthe studyplans will,
therefore, berelatively brief, containing simple descriptions the data to be collected, the
analysis to be performednd the study goalg.g.,“gain insightinto theclasses and origins of
software errors”).

Analysts must alsgreparehigher levelorganizational plans tocoordinate the studies across
projects and to ensure thalt high-priority organizational goalre beingaddressed. Thework
closely with the organization’s managers to choose appropriate projects for major studies.

Appendix B includes a sampbeocess study plan. Than summarizes key characteristics of the
project, specifiesstudy goalsjdentifies keyquestions to be answered &yalyzingproject data
and information, and clearly defines the data to be provided by the project.

59 SEL-94-102

Process Study Plan for
{Project Name}
{Plan Originator Name}
{Date}
1. Project Description
Briefly describe the application and the project team.
2. Key Facts

Briefly state the life-cycle methodology, methods, schedule, project size,
implementation language, and any other important details.

3. Goals of the Study

Explain the goals of this study.

4. Approach

Describe the steps planned to accomplish the goals.

5. Data Collection

Itemize the measurement data and information to be collected during the study.

Figure 5-3. Process Study Plan Outline

A key reasorfor a study is to assess and guide chafigg.change, such as introducing a new
method, tool, or languagmay involve arelement of risk, sany significanthange to a standard
development or maintenanpeocess must bmintly approved by the analysts and the project
manager. Whensked by the analysts to introdwselving technologies on @roject, amanager

must consider the risk, use common sense, be cautious, and even refuse the change if the risk is
too great. Nevertheless, process studies are importantewery organization, and each
development or maintenanpeoject is expected to add some amount of proirdésanation to

the organization’s experience base.

Just as the organization’s high-level measuremplanis must relate to its overall goalgracess

study planfor a project(or for a related set of projects) must showlear connection between

the data being collected and the goals of the study. The sample plan in Appendix B was developed
for an ongoing projecwithin an organizatiorthat already had developed a high-level plan. It
includes a high-level description thfe approach foanalyzingthe projecinformation andlefines

a study intended to support new organizational goals.

5.3.2 Analyzing Project Data

The analystgontinually synthesizdata frommany prgects togain an understanding bbth the
productand process characteristics of the organizalibay look for distinguishingproject
characteristics thadentify subgroupswithin the organization—foexampleall projects using the
Ada language oall projectsapplyingobject-oriented requiremenésmalysisand design methods.
That effort results in daselineset of process amtoductmodels forthe organization and may
reveal change@o models and relationship#)at are not theesult ofexplicitly introducing new
processesBaseline analysis is a majeffort, and it is a critical prerequisifer any analysis or

SEL-94-102 60

packaging of the results afidividual project studies. Experience has shawat thebaseline
characteristics change slowly, even wilie infusion of new processes. Therefore, packagers
generate new handbooks and guidebooks only every 3 to 5 years.

Analysts alsoexamine individualproject data todetermine how trends correlate with project
successes and difficulties. They design the content of the high-level analysis reports and work with
technicalsupportpersonnel to establistine frequency for producing and distributimgports.

These reports generally provide highiel summaries gfroject characteristics aupportspecific

study objectives. Figurg-4 provides aexample of a high-level developmepbject summary

report. Figure 5-5 shows a similar report for a maintenance project.

Once the organization’s processes and products have been characterized, theshiftatiisis
focus to assessinthe impact of change. They compaceirrent project measures with the
organization’s historical models to meastite impact of evolutionary changes introduced by
either explicit changes tthe software processes (such as a new methtabbror external
influences(such as changintie problem complexity). This analysissults in updated process,
product, or management models.

Analysts alsdocus on determininthe impact of new technologies and approaches introduced in
major experiments. They compare experimesdidhwith the historical baseline models to assess
success or failure. Oftéhe resulindicates a guarded success, suggestiaigcontinued study is
needed to refine the technique and confirm success.

Figure5-6 shows the results of a studlgsigned to determine t@pact onthe distribution of
effort across softwaractivities andife-cycle phases whethe Adaprogramming language was
introduced into an organization tHaad previously relied on FORTRAN. Aftére organization
had gainedhe experience afsing Ada omine projects, themodels stabilized as shown in the
figure (see Reference 10).

Although analysts use objective measureregténsively, they also depehdavily on subjective
information gatheredlirectly from project personnel and recorded in project histeports to
helpinterpret the data. Each projdas a uniquset ofdrivers and circumstancéisat must be
considered when interpreting the data. Chapter 6 addressemiy&s, applicatiorand feedback
of measurement information in more detail.

5.3.3 Packaging the Results

As analysts gaigreaterinsight nto the characteristics of the current software development and
maintenance environment anihe impacts of specificsoftware methodologies orthat
environment, they musinfuse that understanding back intbe development organization,
packaging the appropriate software practices foptbblem domain in well-founded standards
and policies sdhat they can be applied on ensuipgjects. Packagingntails generating the
following items:

» Software management policies and guidelines

» Software development and maintenance standards

61 SEL-94-102

Data Summary for Project X
CHARACTERISTICS PHASE DATES LINES OF CODE DERIVED MEASURES
Project name: X Requirements: no date Developed: 73,047 Productivity (SLOC/hour): 4.283
Primary language: Ada Design: 10/26/87 Delivered: 81,434 Productivity (DLOC/hour): 4.774
Current phase: Inactive Implementation: 01/27/88 New: 70,951 Reliability (errors/KDLOC): 4.642
Development computer: VAX System test: 01/05/89 Reused: 10,483 Change rate (changes/KDLOC): 8.277
Components: 494 Acceptance test: 10/03/89 Modified: 0 CPU run rate (runs/KDLOC): 218.4
Changes: 674 Maintenance: 12/15/89 CPU use rate (CPU hours/KDLOC): 0.768
Errors: 378
Total effort: 17,057 hours
Staffing Profile Effort by Calendar Phase
Hfgrs
N Acceptance
107 Nh
g N N N y Test
6 — § N g 6%
s 8 N q Design
6 Sh N Vs System Test 29%
o N VR 24%
| N NNNRN
4 S N N § §
N
2 — N
N sN N
0
5/1/87 10/1/87 3/1/88 8/1/88 1/1/89 6/1/89 11/1/89 Code/Test
41%
Change History Effort by Activity
1,000 ‘ ‘ ‘
800 ‘ ‘ L i
4 . Other Design
6001 ‘ ‘ - — 25% 27%
40; | A
1 | 7
200 ‘
IIIIIIII—I_‘F:I/I/;|IIII|IIII|IIII| TeSt COde
5/1/87 10/1/87 3/1/88 8/1/88 1/1/89 6/1/89 11/1/89 28% 20%
- - Number of Changes
- Number of Versions in Controlled Library
Number of Errors
Error Source Error Class
) Computation PR
Previous Requirements 13% |n|tla::f:23§/tlon
Change go, 3% Functional ’
Specifications
9%
Dfss::/gn Data Logic/CoontroI
0 329 23%
Code Internal Interface
65% External Interface 13%
6%
Figure 5-4. High-Level Development Project Summary Report
SEL-94-102 62

Data Summary for Maintenance Project X

CHARACTERISTICS

PHASE DATES

Project name: X Requirements: no date
Primary language: Ada Design: 10/26/87
Current phase: Maintenance Implementation: 01/27/88
Development computer: VAX System test: 01/05/89
Components: 494 Acceptance test: 10/03/89
Changes: 674 Maintenance: 12/15/89
Errors: 378
Total effort: 17,057 hours
Effort by Activity Number of Changes
Adaptation
Other Correction 4%
27%
Enhancement
37%
Correction
59%
Enhancement
37%
Lines of Code Modules
120- 114 4
34
24
14
8
0
0+
Added Changed Deleted Added Changed Deleted

Figure 5-5. High-Level Maintenance Project Summary Report

63

SEL-94-102

- - - - - - - - = S /]
Acceptance . | Design '
' Design ‘ Other
\ | Test 20% 500, o 26% 23%)
| 12 FORTRAN" ‘ N
Projects Over |, i
7 Years ' System :
| ' Test 16% ‘ Test Code g
| Code/Test ' 30% 21%]
34% |
S N
r e ']
‘ : Acceptance /|
‘ Test 20% Design ,
9 Ada \ 32% /|
Projects Over |
6 Years '
| ‘ System : |
\ ‘ Test 19% Code/Test ‘ ‘
‘ 29% ,
s 4
Effort Distribution by Phase : ' Effort Distribution by Activity ‘
(Determined by Date) . (Determined by Programmer Reports)

Figure 5-6. Impact of Ada on Effort Distribution

» Software training
* Tools and automated aids
* Reports of process studies

» Updates of packaged materials

Software Management Policies and Guidelines

Much of theinformationthathas been collected and synthesizethbyanalysiscomponent is fed
back into the organization in the form of modelsnning aidsand guidelines. Whgmackaged
into well-designedgolicies andguidebooks, this information can improve a managaikty to
plan a software project, monitor its progress, and ensure the quality of its products.

Management policies and guidelines prowvde local scheduling, staffing, antbst estimation
models that are needed for initial project planning as well as for re-estimation duliiegotfhine
project. NASA’'s Manager's Handbook for Software DevelopméReferencelO) contains
guidelines and examples for using numerous models, such as

* Relationships relating effort to system size
» Effort and schedule distributions by phase
» Staffing profiles

* Productivity relationships

SEL-94-102 64

The key models usefbr gauging project progress agdality are organized and packaged
together,preferably withthe planning models, in a singkeference sourcelypical progress
models include local profiles &foftware growth, computer usand test completion. Quality
models includeerror rates, reportednd corrected softwaidiscrepancies, and software change
rates.Figure 5-7 shows aexample of arerror ratemodel used to predict antdack errors
throughout thdife cycle. The model was calibrated by measutimggerrorcharacteristics of over
25 projects with more than 5,0@0rors reported. It depicts thgpical rate offinding errors in
code (four errors per KSLOC), during thgstemtestphasegtwo errors peKSLOC), and during
acceptance testing (one error per KSLOC), a reduction of 50 peraeamthnsubsequent phase.
Because no data were collectitting thedesign phasehe error rate is zero. Thariation was
also computed, as shown in the figure. An actual error rate above the boundnade¢haay be
the result of misinterpreted requirementsnoaly becaused byhighly unreliable or complex
software. An actual rateelow the boundmay bethe result oparticularly well-builtsoftware, a
relatively simple problem, or inadequate testing.

Every organization can and shoyicbduce a documembntainingthe complete set ohodels,
relationships, and management guidelingsdwithin the organization. (See Reference 8 for an
example of such a document.)

System Acceptance
Design Code/Test Test Test

|
Expected Range

6 — Historical Norm =——

Cumulative Errors per KSLOC
D
l

w
l

|
Schedule

Figure 5-7. Sample Error Rate Model

Software Development and Maintenance Standards

In a mature measurement program, standards for software developmerdiatethance address
each phase of the softwalife cycle, coveringthe entire range déchnical activities. These
standards define the products, methods, tools, data collection procedures, and certification criteria

65 SEL-94-102

that have beendentified as beneficial tathe organization. Separate, detailed standards
characterize programming practices uniquénedocal environment or to a specific development
language; they also addresgsecialized techniques, such tae Cleanroom method or object-
oriented design.

The most useful, high-quality software engineesitagndards are derived from the practices of the
organization forwhich theyare intendedhat is, theyare measurement driven. A standard
requiring the use of processemt areincompatible withthe organization’s development and

maintenance methodology cannot be successful.

Software Training

The organization’s goals, environment, and measured experiences mushe&planning and
execution of thdraining curriculum. Courses reflettte understanding of the characteristics of
the local environment, and each course must respond to a specific need.

Training becomes essential when new technologii@sdards, tools, or processesiaf@sed into
the softwareengineering environment. Personast mordikely to accept a new approaghen
it has been introduced in well-organized stages within the interactive setting of a training course.

Training must be provided first tthose who are participating in axperiment with a new
technology and then to a wider audience@m as the technolodyas beemadopted for gesral
usewithin the organization. Araining program should alsoclude courses that introduce new
personnel to the software development and maintenance environment.

Tools and Automated Aids

Packaging personnel albaild tools andother automatedids to facilitatesoftware management,
development, maintenance, or data collection processes. Such tools include

» Cost estimation aids based on local models
* Management aids that compare actual measured values with baseline estimates
» Design aids that are driven by experimental results indicating beneficial design approaches

In addition, more sophisticated toolgy use the organization&xtensive historical information
for managing andor analysis. An example of such a tool tlee SoftwardMlanagement
Environment(SME) (Reference20). It encapsulates experience (i#ata, research results, and
management knowledge) gained frpastdevelopment projects in a practical tool designed to
assist current software development managers in their day-toadaggement anglanning
activities. TheSME provides integrategraphical featureshat enable a manager to predict
characteristics such as milestonesst, and reliability; track software project parameters;
compare thevalues ofthe parameters to past projeesalyzethe differences betweeaurrent
and expected development pattemithin the environment; and assetbge overall quality of the
project’s development progress. Fighr8 illustrates the architecture angpical uses of such a
tool.

SEL-94-102 66

 ——

Current Data

PREDICT
g t
(%] . . .
£ Current Size Estimated Final
] System Size
2
%)
]] L1
Code/Test System Test Acceptance Test
8}
(]
—I . .
9 Estimated Final
= Error Rate
e — 2 N
g Current Error
SEL Database & | ,Rate L
® Past project data (== Code/Test System Test Acceptance Test
* Product estimates Time

ANALYZE

= Current Project

! Model

* Project charac- —> SME 2
teristics o .
* Project error data _> s + Errors below normal
5 becaust_a _of)
g o |nsufficient testing
@ S ® Experienced team
z ® Problem less difficult
Models and than expected
Measures | |
' Rule Base
. Proltlles of past Code/Test End Estimated
per‘o‘rrnance ® Rules of software
¢ Definitions of key development
parameters ® Problem and ASSESS .
¢ Models and rela- project charac- Project Assessment
tionships isti
¥p/ teristics Above
® Rules for eval-
uating quality
— - 7
Normal

Below % % %

Reliability Maintainability — Quality

Figure 5-8. SME Architecture and Use

Reports of Process Studies

For each process study, analysts prepare one or rapggts that address the goal, thethods
employed,the results measured, and the conclusions drawn. Inmeponts documenpartial
results during lengthy or ongoirgjudies, andinal reports are prepareidhmediatelyafter the
study is completed.

67 SEL-94-102

Final reports arevital sources ofinformation whenthe time comes tointegrate study
recommendations witbther standard practices befqrackaging them as policies, guidebooks,
courses, or tools. An organization may, therefdire] it helpful to collect all study reports
produced within a year into a single annual reference volume.

Some organizations repackage studgorts fordistribution outside thdocal environment as
conference papers and presentations, gjairsing valuable feedback by subjectihg results to

peer review. Such scrutiny can offer comparisons, su@gest interpretations aconclusions,

and help improvethe datecollection procedures andnalytical methods employed by the
organization.

Updates of Packaged Materials

All packaged materials—policies, standaotsjrsematerialstools, and study reports—must be
maintained in an organizationadpository. Togethewith the information inthe measurement
database, the repository of packageaterials functions afe memory ofthe organization. It is
essentiathat the contents of thdorary becatalogued anthat the catalog be kept up-to-date as
new material isadded. In the SEL, foexample, a bibliography containidpstracts ofll SEL
documents is revised and republished annually.

The analysisand packaging component also updates guidebtraking coursespolicies, and
tools on a regular basis to keep the organization abreast of current software engineering practices.

SEL-94-102 68

Chapter 6. Analysis, Application, and Feedback

Chapter Highlights ||

UNDERSTANDING

» Software attributes
» Cost characteristics
e Error characteristics
* Project dynamics

MANAGING

e Planning
» Assessing progress
e Evaluating processes

GUIDING IMPROVEMENT

e Measuring process impact
e Adapting process to local environment
« Eliminating processes with little value

69 SEL-94-102

Software measurement programs must focus on the udatafrather than otheir

collection. Thus, the approach ising measuremewiata must belearly defined, and
the data must be analyzed and packaged in a suitable form. The effsetdfemeasuremedata
is an outgrowth of thelanning exercisentit establisheshe organization’s goalahich drive the
measurement activities.

T his chapter describespecificapproaches fousing measurement information effectively.

The following sections address theanalysis, applicationand feedback of measurement
information inthe context of the thrdesy reason$or establishing a measurement gmam, as
discussed in Chapter 2:

1. Understanding
2. Managing
3. Guiding improvement

Examples drawn from experiencegthin NASA illustratethe important points. Becausach
organization’s measurement goalay differ, the examplegpresented hemnay not relatedirectly
to the needs of other organizations.

6.1 Understanding

The first reason for measurementnderstanding-includes generating models of software
engineeringprocesses and threlationships amonthe process parameters. As an organization
builds more models and relationships and refines them to improve their accuraeiaditity, its
personnel develop more insight into the characteristics of the software processes and products.

True understanding requiregualitative analysis of objective and subjective measurement
information, including examinatiofor accuracy and checks for flawed, missing, or inconsistent
datavalues. If used properly, subjective information isvalsiable as objectiveounts.Unlike
objectivedata,which are used in statisticahalysis, subjective information refletie experience

of managers and developers within the organization’s local environment. The resulting models and
relationships, whether derived from objective or subjective informatienyelevanonly within

the local environment.

The understanding process includes the following major measurement applications:
» Software attributes
» Cost characteristics
» Error characteristics
* Project dynamics

Increased understanding provides the foundatiorbddding modelsand relationships and for
developing the key information required for managing subsequent software development efforts.

Theexamples in this sectiatepict various measurement applicatitre have provebeneficial
to experienced measurement organizatiéisof the models can be developed fraire core
measures described in Chapter 4. €&le descriptionsre by nameans exhaustiv&inding
the answers to the questions posediahle6-1 is anessential activity in applying measurement.

SEL-94-102 70

Basili's Goal/Question/Metric paradigm (References 23 2)dprovides the framework to relate
the questions iMable6-1 (andTable6-5) to the goals ancheasures addressed in th@mples
that appear throughout the rest of the chapdey software organization wilbenefit from
analyzing the fundamental information shown in these examples.

Table 6-1. Questions Leading to Understanding

Measurement
Application Understanding Examples
Software What languages are used, and how is the use evolving? 1
Attributes What are the system sizes, reuse levels, and module profiles? 2
Cost What is the typical cost to develop my software? 3
Characteristics | \what percentages of my software resources are consumed in the 4

various life-cycle phases and activities?

How much is spent on maintenance, QA, CM, management, and 5
documentation?
Error What are the error rates during development and maintenance? 6
Characteristics | \what types of errors are most prevalent? 7
How do size and complexity affect error rates? 8
Project What is the expected rate of requirements changes during 9
Dynamics development?

How fast does code grow during development, and how fast does it
change?

6.1.1 Software Attributes

Informationabout software attributes éasy torecord and use but iso often overlooked. At a
minimum, organizations shouldecord thesizes, dates, anldhnguages used on evepyoject.
Thosebasic characteristicare necessary for developirgpstmodels, planning aidgnd general
management principles. Tabe2 shows a subset of the actual data usezhl@ulating the
information shown irthe examplesthat follow. For a more coplete listing ofthe data, see
Reference 9.

Example 1:
Language Evolution

Goal: Determine the language usage trend.

Measures needed: Project dates, sizes, and languages.
(See Sections 4.3 and 4.5.)

71 SEL-94-102

Table 6-2. Software Attribute Data

Development New Reused Effort

Project Language Period SLOC SLOC (Hours)
ISEEB FORTRAN 10/76-09/77 43,955 11,282 15,262
SEASAT FORTRAN 04/77-04/78 49,316 26,077 14,508
DEA FORTRAN 09/79-06/81 45,004 22,321 19,475
ERBS FORTRAN 05/82-04/84 137,739 21,402 49,476
GROAGSS FORTRAN 08/85-03/89 204,151 32,242 54,755
GROSIM FORTRAN 08/85—-08/87 31,775 7,175 1,146
COBSIM FORTRAN 01/86-08/87 47,167 5,650 49,931
GOADA Ada 06/87-04/90 122,303 48,799 28,056
GOFOR FORTRAN 06/87-09/89 25,042 12,001 12,804
GOESAGGS FORTRAN 08/87-11/89 113,211 15,648 37,806
GOESIM Ada 09/87-07/89 65,567 26,528 13,658
UARSAGSS FORTRAN 11/87-09/90 269,722 33,404 89,514
ACME FORTRAN 01/88-09/90 34,902 0 7,965
UARSTELS Ada 02/88-12/89 44,441 23,707 11,526
EUVEAGSS FORTRAN 10/88-09/90 55,149 193,860 21,658
EUVETELS Ada 10/88-05/90 2,532 64,164 4,727
EUVEDSIM Ada 10/88-09/90 57,107 126,910 20,775
SAMPEXTS Ada 03/90-03/91 3,301 58,146 2,516
SAMPEX FORTRAN 03/90-11/91 12,221 142,288 4,598
SAMPEXTP FORTRAN 03/90-11/91 17,819 1,813 6,772
POWITS Ada 03/90-05/92 20,954 47,153 11,695
TOMSTELS Ada 04/92-09/93 1,768 50,527 6,915
FASTELS Ada 08/92-10/93 5,306 59,417 7,874
FASTAGSS FORTRAN 08/92—-04/94 21,750 125,405 7,550
TOMSEP FORTRAN 05/93-04/94 24,000 180,300 12,850

SEL-94-102

72

Language Usage Trend

Data recorded atlASA to track language usage on projects have provids@ht into

the trends within the organization and have led to hataningfor programmer training.

Figure 6-1 compares the language usage on projects completed before 1992 (and currently
in maintenance) with those in development after 1992 (see Referefice 21).

GSFC Software

C/C++ Other
11% >10%
Ada
10%

Other
26%

C/C++

0
Ada 45%

<1%
FORTRAN
<35%
FORTRAN
62%

Currently Under Maintenance Currently in Development

Figure 6-1. Language Usage Trend

Example 2:
Product Profiles

Goal: Determine the levels and trends of code reuse in projects.

Measures needed: Project dates, sizes, and percentages of reuse.
Total effort on each project.
(See Section 4.5.)

The characteristics of the source cddelf canprovide useful informatioabout software
projects.Too often thisbasic information, which irequired to develop effectivast and
planning models, is neither archivedr usecdeffectively. Relatively simple historical
models can be usefuior managing and guiding improvements @nojects. The
information includeshe typical size of projets and components; profilesszfurce code
distributions among commentary, data definitions, and executable code; and resultant code
reuse models.

8 The percentages shown in the figure deeved from dat@ollected from over 75 projects covering@an of 10
years. Table 6-2 represents only a small sample of those data.

73 SEL-94-102

Code Reuse Trend

Figure 6-2 shows trendderived from 11 FORTRAN and 8 Ada projects. Thedels
were initially produced in 1989 for thearly projects; more recent projects reflect a
significantly higher percentage of reuse.

The basicsource codenformation is neededot only for tracking changes in the code
reuselevel overtime but,more importantly, fodetermining essentiabbstmodels for the
local environment. Th&llowing section discussd®ow to derive cost-impactodels of
reuse.

]
100 ~ %5 1%} 2
& 2= 8 <2
@ 90 7 § £5 sb B2
g 80' g ~ w EE
£ 70 5
¢ 7
T 60 - /
8 oo /
S s
o 20 4 S Tx 2O @ el G / g
5 10 7 HO:S Jo a3 / S
o .
Al mi
0

Early FORTRAN
Baseline (1986-1988)

FORTRAN Projects
Since 1989

Percentage of Code Reuse

100 ~
90 -
80
70 -
60 -
50 -
40
30
20
10 ~

g

UARSTELS

32%
9%
GOESIM
35%

% average
29%
%

Early Ada
Baseline (1986—-1988)

EUVETELS
SAMPEXTS
97%
TOMSTELS
FASTELS

92%

86% average
96%

EUVEDSIM

Ada Projects
Since 1989

SEL-94-102

Figure 6-2. Code Reuse Trend

74

6.1.2 Cost Characteristics

Software costharacteristics arprobablythe most important set of attributes that contribute to
an understanding of softwar€ost characteristics include productivitgost of phasesgcost of
activities, cost of changes, andanany other attributes required famanaging, planning, and
monitoring software development and maintenance.

Example 3:
Cost Versus Size

Goals: Evaluate the cost of reusing code.
Determine the cost of producing code in the organization.

Measures needed: Project size, dates, reuse, and effort data.
(See Section 4.5.)

Cost of Reusing Code

Simplemeasures can be used to derive a local nfodehe cost oproducing software.
One majorfactor that must banalyzed ighe impact of code reuse aost. Borrowing
code written for an earlier software project and adapting th®rcurrent project usually
requires less effort than writingntirely newcode. Testing reused code also typically
requires les=effort, because most software errors in reused code &lawady been
eliminated. Softwargrojects using aignificantamount of reused codgsually require
less overall effort than do projects with all code written from scratch.

Chapter 2 introduced thillowing relationship amonghe values of effort(cost of
personnel), DLOC, and productivity:

Effort (in hours)= DLOC / Productivity

where
DLOC = New SLOC+ Reuse Cost Factor Reused SLOC

The reuse cost factois a weightingfactor applied to reusedource codeSeveral
simplifying assumptions can be made to compute an approximatdaathis factor. The
most significant assumption ighat all similar projectseflect approximatelythe same
productivity; hence, thenly variable ighe cost of reuse. lihis casethe similarity of the
projects comes from theiraving beerdeveloped withirthe same environment and in the
same language (FORTRAN). Although numeratber factorsaffect the cost of
development, it is best tapply simplemeasures to arrive at an approximation before
attempting detailed analysis of more complex factors.

75 SEL-94-102

Points derived from values in Tab&2 can be plotted tdlustrate therelationship
betweenlines of code per hour and the reuse percentage as showAigume 6-3.
Assumingthat productivity (DLOC/Effort) is constant, the straighte fit to the DLOC
points indicateshat 20 percent is @asonable approximation for the reaest factor for
FORTRAN.

20

O Total Source Lines o

=
&)]
|

* Developed Source Lines
(20% Reuse Cost Factor)

10

Productivity (Lines per Hour)

0 20 40 60 80 100

% Reuse

Figure 6-3. Derivation of 20 Percent Reuse Cost Factor for FORTRAN

Figure6-4 shows a&lightly differentapproach for Ada language projedsalysts within

the same environment studied size, effort, and relsga fromfive projects developed
between 1987 and 1990 to derive the Ada rexsst factor.Attempting to produce a
constant productivity value, they computed the productivity as DLOC per hour for each of
the five projectswhile varyingthe reuse cost factors. tims casethe 30 percent factor
resulted in the lowest standard deviation for the computed produstahigs and was
adopted for this organization.

Every organization can develop its own recsst factorwith the simple measurdisted
in Table 6-2.

Cost of Producing Code

One of the mosbasic aspects of softwarengineering understanding tise ability to
modelthe cost of aystem orthe basis of size or functionalitgection 2.2iscussed the

basic estimation models, relatiogst to softwaresize, which haverovenuseful in one
environment. Those modelsere derived byanalyzing data from over 100 projects
spanning manyears and by making careful decisi@mutwhich projects toinclude in

the baseline model and which to exclude. Organizations just starting to apply measurement
should begin to establish cost models with their own data.

SEL-94-102 76

Reuse Cost Factor (Standard Deviation)

6 0020% (0.655)
[0 25% (0.474)
5 M 30% (0.348)

DLOC per Hour
w

GOADA GOESIM UARSTELS EUVETELS EUVEDSIM

Figure 6-4. Derivation of 30 Percent Reuse Cost Factor for Ada

Example 4:
Effort Distribution

Goals: Determine the relative cost of each life-cycle phase.
Determine the characteristics of staffing profiles.

Measures needed: Project phase dates, effort data, and developer activity data.
(See Sections 4.1 and 4.5.)

Cost of Life-Cycle Phases
An effort distribution can be modeled in two ways:

1. By phase, to determimeghich phases ahelife cycleconsume what portion of the
total effort

2. By activity, to determine whadortion of effort is spenperforming each defined
software engineering activity

Figure 6-5 shows thosevo distributions of effort for thesameset ofdevelopment
projects. Thanodel of effort bylife-cycle phase represents hours charged to a particular
project during each phase as determined bypéigsnningand endinglates of the phases.
The model of effort by activity represerdfl hours attributed to a particulactivity,
regardless of when ihelife cycle itoccurred. The fouactivities (design¢ode, test, and
other) aredetermined by localprocess definitions. The “other” categomcludes

77 SEL-94-102

supporting efforts such asanaging, training, attending meetings, and preparing

documentation.
FORTRAN Projects
Acceptance ; Other Design
Test 20% Design

30% 26% 23%

System
Test 16% Test Code
. 30% 21%
Code/UnitTest
34%
Effort Distribution by Phase Effort Distribution by Activity
(Date Dependent) (Not Date Dependent)

Figure 6-5. Effort Distribution Model

Staffing Profiles

Another use of effort data is tmodel the baseline staffing profilehat reflects the
development environment artde type of problem. In the SEnvironment, where a
substantial portion of the detailed requirements is not known until mid-implementation, the
expected modalesembles a doubly convex curve insteathef traditionalwidely used
Rayleighcurve (see Figuré-6). The cause dahis trend is notwell understood, but it
occurs repeatedly diight dynamics projets in thatenvironment. It is valuabl&r each
software organization to produce its osmaffing profilerather than taely on a generic
model that may have no relevance to the actual processes used at the local level.

System Acceptance
Design Code/Test Test Test

Rayleigh Curve

Effort

Expected SEL Profile

Time

Figure 6-6. Staffing Profile Model

SEL-94-102 78

Example 5:
Cost of Major Activities

Goal: Build models of the cost of maintenance and other major
activities, such as documentation and quality assurance.

Measures needed: Developer activity data, effort, and software size.
(See Sections 4.1 and 4.5.)

Cost of Maintenance

Software maintenance includélsree types ofactivities occurring aftethe system is
delivered:

1. Correcting defects found during operational use
2. Making enhancements that improve or increase functionality

3. Adapting the software to changes in the operational environment, such as a new
operating system or compiler

The SEL environment hagwo major types of systems under maintenamoaltiple-
missionsystems, whiclsupportmanyspacecraft and have a softwéfetime of from 10

to 30 years, andingle-missiorsupportsystems, whiclun as long as the spacecraft are
operational typically from 2 to 7 yearsBoth types ofsystemsare writtenprimarily in
FORTRAN on mainframesand areaoughly the same magnitude in siz€l00-250
KSLOC). A large percentage of thheaintenance effort is speabhancinghe system by
modifying and recertifying existingomponents. SEmaintenance personreatidfew new
components and produditle new documentation. Averagannual maintenanceost
ranges from 1 to 23 percent of the totldvelopmentcost of theoriginal system.
Table 6-3 includes analysis ofepresentative data froreeveral SEL systems under
maintenancdor at least 3 years. Some of teuesare notavailableand some are
guestionable; nevertheless, analysis provides useful insights into the cost of maintenance.

On thebasis ofthe aboveanalysis,and in consideration of thiegh variation among
systems, theSEL uses the conservative approach showralote 6-4 when estimating
maintenance costs.

A general model ofhe overall cost of thedevelopment and maintenancesoftware can
be of significant valuéor identifying more detailed breakdowns cbst bykey activities.
The data from projects depicted in Tabl@ are used tdetermine theost ofseveral key
activities.

79 SEL-94-102

Table 6-3. Analysis of Maintenance Effort Data

Yearly Maintenance Effort
Size Development History (Hours) % Effort
System Type | (SLOC) | Effort (Hours) 1st ond 3rd | Average per Year
COBEAGSS S 178,682 49,931 57 0 0 19 0.04
GROAGSS S 236,393 54,755 496 370 370 412 1
GOESAGSS S 128,859 13,658 607 159 950 572 4
EUVEAGSS S 249,009 21,658 757 358 410 508 2
DCDR M 75,894 28,419 n/a | 4,000 | 4,000 4,000 5
ADG M 113,455 45,890 n/a | 6,000 | 6,000 6,000 13
CFE M 98,021 30,452 n/a | 2,000 | 2,000 2,000 2

NOTE: S = single mission system.
M = multiple mission system.

Table 6-4. Basis of Maintenance Costs Estimates

Estimated Annual Maintenance
Cost as a Percentage of Total

Project Type System Development Cost
Single-mission systems 5%
Multiple-mission systems 15%

Costs of Documentation, Quality Assurance, and Configuration Management

The costs of suppoéctivities such as documentation, QA, and é@id determineftom
the developmengctivity measures combined withe basic timereporting from the
support organizations. These data aasy to collect irmost software organizations.
Figure 6-7 shows the data collected from dae NASA organization. Abasic
understanding of theost of thesectivities is essential dbat any change or attempt to
plan for these efforts can be based on a solid foundation.

6.1.3 Error Characteristics

Understanding the characteristics esfors in the software products is just as important as
understanding theost of producing andmaintainingsoftware. The nature of software errors
includesthe errofrequency, theost oflocating and removingrrors, theseverity ofthe errors,

the most common causeseasfors,and the processes mestective in identifying or preventing
errors.

SEL-94-102 80

11%

Management
10%

Requirements

Analysis, Design,

Code, Test
70%

Figure 6-7. Typical Allocation of Software Project Resources

Example 6:
Error Rates

Goals: Determine the average rate of uncovering errors.
Determine which life-cycle phases yield the most errors.
Compute the error rate in delivered software.

Measures needed: Project size, phase dates, and reported errors.
(See Sections 4.2 and 4.5.)

Error Rates by Phase

Figure 6-8 illustrates a model thfe number ofreported errorgnormalized bythe product
size) over the various phases of lifeecycle. This model combinggoductand process
data and provides two types of information.

The first type is the absoluegror rate expected in eaphase. The rates shown here are
based on SEL development projects from the mid-1980snibael predictsabout four
errors perKSLOC during implementationtwo during system testingpne during
acceptance testing, and one-half during operation and maintenance efifoosates by
phaseyield anoverall averageate ofsevenerrors pefrKSLOC during development. An
analysis ofmore recent projects indicatdsat error rates ardeclining as improvements
are made in the software process and technology.

81 SEL-94-102

6
X

51 X
[®]
% 4 X =
2 X X
@ 31
o
&
S -
o 2 ~ ¥ X X

X X
X
1 X X I X X X
AA
0 T T T -
Code/Test System Test Acceptance Test Operations

Figure 6-8. Error Detection Rate by Phase

The second piece of informatiortieat error detection rates dralved in each subsequent
phase. In the SElthis trendseems to be independenttbé actual ratgalues, because
the 50 percent reduction by phase is holding true even as recent error rates have declined.

Example 7:
Error Classes

Goal: Determine what types of errors occur most often.

Measures needed: Reported error information.
(See Section 4.2.)

Types of Errors

Figure6-9 depictdwo models oferror class distribution. The model oime left shows the
distribution of errors among five classes for asample of projects implemented in
FORTRAN. A manager can use such a model (introduced in S@c#idr) tohelp focus
attention where it is most needed during reviews and inspections. In addition, this type of
baseline canshow which profiles seem to beonsistent acrossliffering project
characteristics, such as in the choice of development language.

The model orthe right shows the distribution across shene classes @frrors for Ada
projects in thesame environment. Contrary to expectatibeye islittle difference in the
error class profiles betweethe FORTRAN and Ada development efforts. @ossible
interpretation of this result that theorganization’s overallife-cycle methodology and
the experience of the people tinat environmentare strongeinfluences onprocess
profiles than any one specific technology.

SEL-94-102 82

8 FORTRAN Projects 5 Ada Projects

Computational Initialization Computational Initialization
15% 15% 15% 15%

Logic/Control
16% Logic/Control
22%
Data Data
30% 31%
Interfaces Interfaces
24% 17%
Figure 6-9. Comparative Error Class Distributions
Example 8:
Errors Versus Size and Complexity
Goals: Determine if error rates increase as module size increases.

Determine if error rates increase as module complexity
increases.

Measures needed: Error reports by module, module size, and module
complexity.

(See Sections 4.2 and 4.5.)

Many measures pposed in the literature attempt toodel errors or effort assome
function of program or design complexitywo of themost prevalent sets are Halstead’s
software science measures and McCabgtdomatic complexity number. A 1983 SEL
study (see Referenc22) examinedthe relative effectiveness othose measures and
simpler software size measure¢SLOC) in identifying error-prone modules. Ainear
analysis ofvarious scatter plotasing412 modulegailed to support thecommonly held
belief that larger or more complex systems have higher error rates.

Figure 6-10 showdhat error ratesactually decreased as botkize andcomplexity

increased for the largeampleset inthis environment.However, moreextensiveanalysis

revealedthat this unexpectedrend occurred foonly the limited set ofmodules used in
the earlier studyWhenthe sample sizavas increased, the trend reversed, suggettatig
it is wise to be cautious of drawing conclusions from limited analysis.

9 Module complexity can be derived from an analysis of completed software.

83 SEL-94-102

0.0600 0.0600

0.0525 — 0.0525 —
0.0450 — 0.0450 —
0.0375 — 0.0375
0.0300 — 0.0300

0.0225 — 0.0225

Errors per SLOC
Errors per SLOC

0.0150 — 0.0150

ko ok kk ok okkkkk kK Kk * *k ok F ok ok
0.0075 ex xeren mrrrwrs k%o xe xx x 0.0075

I T I T I T T I I I I I I |
15 45 75 105 135 165 195 100 300 500 700 900 1100 1300

McCabe Complexity SLOC

Figure 6-10. Cyclomatic Complexity and SLOC as Indicators of Errors (Preliminary Analysis)

6.1.4 Project Dynamics
An analysis of project dynamics data can give managers useful insight into changes to
requirements, to controlled components, and in the estimates to completion.

Example 9:
Growth Rate Dynamics

Goal: Derive a model that characterizes the local rate of code
production.

Measures needed: Phase dates and weekly count of completed code.
(See Section 4.4.)

The growth rate of the source code in toafiguration-controlledibrary closely reflects
the completeness of the requirementsductand some aspects of the software process.
In the SELenvironment, periods of shagoowth in SLOC are separated by periods of
more moderate growth, as shownHigure 6-11. This phenomenon reflectbe SEL
approach ofimplementing systems in multiple buildBhe model also showbkat, in
response to requirements changes, 10 percent abte istypically produced after the

start ofsystem testing. The uncertainty bdmghlightsthe typical variationexpectedvith
this model.

SEL-94-102 84

System | Acceptance
Design Code/Test Test Test

100

90

80 —

70

60 —

50

% of Total LOC

40

30+

20

10

T L
10 20 30 40 50 60 70

% of Schedule

00 o e - —— —— ——— — —— —— — ——

Figure 6-11. Growth Rate Model

6.2 Managing

The management activities ginning, estimatingracking, andsalidating modelsintroduced in

Section 2.2all require insight intdhe characteristics of the organization’s softveargineering
environment and processes. Measurement data extracted during the development and maintenance
phases will provide quantitative insight into whether a project is progressing as expected.

An analysis ofthe following types of measurement information can lead téebatanagement
decision making:

Planned versus actual valuégacking ongoing progress requires only the actual data
but alsoplanningdata based oestimates from local models. Candiddt@ssuchanalysis
include effort, errors, software changes, software size, and software growth.

Convergence of estimates.manager should expect to revise estimpgdically. The

frequency of revisions can be basedlmn pattern of the datseingtracked. If the actuals
are deviating fromthe current plan, more frequent updates are neededsuthbessive
estimates themselves should eventuadigverge anaot vary wildly from one estimate to
another.

Error history and classes of errorAn analysis okrror datecan pinpoint problems in the
quality of development or maintenan@ecesses. Possible focus areafude design or
code inspections, training, and requirements manageni2ata from relatively few
projects can be effectively used in this manner.

85 SEL-94-102

An effective measurement program enhances management activities:

* Planning Historical information, along with estimates of the current progwble the

manager to prepare schedules, budgets, and implementation strategies.

» Assessing progresMeasures indicate whether projected schedotest,and qualitywill

be met and also show whether changes are required.

» Evaluating processesThe manager needssight into whether a selected software
engineering process is being applied correctly and how it is manifested in the final product.

Usingtheinformation gained from tracking software measures, managers have numerous options
for addressing possible progress or quality problems. Those options include adjusting staff, adding
resourcesghangingprocesseseplanning, and enforcingmocess, among otherBable6-5 lists
the examplespresented in this sectiomhich are derived from actudata onNASA software

projects.
Table 6-5. Questions Supporting Management Activities
Measurement]
Application Managing Examples
Planning What is my basis for estimating cost, schedule, and effort? 10
What is my basis for projecting code growth and change? What is 11
my organization’s model of expected error rate?
Assessing Is my project development proceeding as expected? 12
Progress How stable are the requirements and design? 13
Is my original staffing estimate on track? 14
Are we correcting defects faster than they are detected? When will 15
testing be complete?
Are we producing high-quality and reliable software? 16
Evaluating Are our standard processes being applied properly? Are they having 17
Processes the expected effects?
6.2.1 Planning

A software manager’'s majoesponsibilities include effective planningtae start of a project.
The manager must estimatest, schedules, and efforgefine the processes; amtitiate a
mechanisnfor tracking against the plan. Thejor application of measurement information for
the planningphase is to make use thle derived models, relationships, amgghts gained from

measurement understanding efforts.

SEL-94-102

86

Example 10:
Projected Cost, Scheduling, and Phases

Goal: Estimate cost, schedule, effort, and errors.

Measures needed: Project size estimate, models, and relationships.
(See Sections 2.2, 6.1.2, and 6.1.3.)

Although estimatinghe size of a newproject is noteasy, most organizations have an
approach for producing a reasonatile estimate iISLOC. Oncehat size estimate has
been calculated, the derivetiodels for cost, schedule, effort, andther project
characteristics can be used in gienningphase. The models described in Sedfidnare
used to derive more detailed estimates of a project based ®iz¢hestimate. The
following exampledepicts theplanningfor an AGSS project whoseitial sizeestimate is
150 KSLOC of FORTRANcode, ofwhich 90 KSLOC is estimated to be new and 60
KSLOC is estimated to be reused from other systems.

The manager computes DLOC as
DLOC = New SLOG+(Reuse Cost Factor Reused SLOC)
= 90K + (0.2x 60K)
=102K
Using a productivity rate of 3.2 DLOC per hour (see Chapter 2)
Effort = DLOC / Productivity
=102 KDLOC/ @.2 DLOC per hour)
=31,875 hours
=206 months
The manager next distributes the effort acrosdifidreycle phases (see Tab&6) using
the percentages shown in Figér® andestimates the duration of the developmesig
the relationship introduced in Chapter 2:
Duration= 4.9(Effort§?
=4.9(206 months)’
=24.2 months
Figure 6-8 tells the manager to estimagzrors pelKSLOC during development; for 150

KSLOC, the estimate is 1,050 errors distributed as showalle6-6, with 75 additional
errors estimated to be detected in the operational system.

87 SEL-94-102

Table 6-6. Project Planning Estimates

Activity Estimate

Development Effort

Design (30%) 62 staff-months
Code/unit test (34%) 70 staff-months
System test (16%) 33 staff-months
Acceptance test (20%) 41 staff-months
Total 206 staff-months
Duration 24.2 months
Errors

Code/unit test 600 errors
System test 300 errors
Acceptance test 150 errors

Total development 1,050 errors
Errors

Operations 75 errors
Annual maintenance effort 31 staff-months
Documentation effort 23 staff-months

Assumingthat thesystem is intended tsupport multiplemissions,the estimatednnual
maintenance effort (derived from Table 6-4) is 31 staff-months.

Finally, the cost of supposctivities can be derived from Figuse/. Table6-6 shows the
estimated cost of the documentation effort.

Example 11:
Project Dynamics

Goal:

Determine the expected growth rate, change rate, and error
rate of source code.

Measures needed:

Project size estimate, models, and relationships.
(See Sections 2.1 and 6.1.)

The project manager introduced in the previexsample caruse models derivedom

historicaldata to project the expected rate of source code growitelbasthe expected
changerateanderror rates of the software. Eanbw project willalways strive to attain
lower error rates; howeveuntil those lower rates are packaged into reganizational

SEL-94-102

88

models, the manager should use the cutmestbrical models. Figuré-12 illustrates the
planning charts derived from the models discussed in Sections 2.1 and 6.1.

Growth Rate Change Rate
System [Acceptance) System |Acceptance|
150 Design Code/Test }I/'est Tepst Design Code/Test Test Test
135 - ’ / 12009
120 ' 1,050
105 — 900 <
o
O 90 .
3 g) 750
7 75 E 600
¢ G %1
60 — 450 <
45 1 300 -
30
150
15
0 n) . , 1 —
TR B e I | I 1 10 20 30 40 50 60 70 80 90 100
10 20 30 40 50 60 70 80 90 100 % of Schedule

% of Schedule

Error Detection Rate

900

750

600

Errors

450

300
150 4 —‘1
0

))
CodefTest System Test IAcceptance Test Operations

Figure 6-12. Planning Project Dynamics

Estimating thefinal softwaresize isthe most understood amdeful basidor project
planning, andthe basic historical models derived duritite understanding stage of a
measurement program are the most impogkamning aids. As aarganization completes
more detailecnalyses othelocal environment, additional models will provide even more
accurate planning data. Such parameters @soblem complexity, team experience,
maturity of the development environmesthedule constraints, amgany others are all
valid considerations during th@anning activity. Untithe measurement program provides
some guidance on the effect of such parameters, pptgeeting should relprimarily on
lines of code estimates, along with the basic historical models.

6.2.2 Assessing Progress

A second important managemeesponsibility is to assefise progress of the development and
maintenance activityProject managers mustack theactivities and interpreany deviations from
the historical models. Although experiencetie best asset faarrying out this responsibility,

89 SEL-94-102

several measurese helpful. The standard earned-value systemtsch aid in analyzinghe rate
of resources consumed comparedolanned complete@roducts, areeffective for supporting
progress trackingAlong with earned-value techniquesther softwaremeasures can provide
additional insights into development progress.

Example 12:
Tracking Code Production

Goal: Determine whether development is progressing as expected.

Measures needed: Biweekly count of source library size, manager’'s updated
at-completion estimates.

(See Section 4.4.)

An analysis of historical data enables the derivation of such profilee agpected rate of
code growth in the controllelibrary (see Figures-11). Using such a model, project
manager can determine whether code production is proceealinlly or is deviating
from the expected range of values. As vather models, a project’s deviation from the
growth-ratemodel simply meanshat the project iddoing something differently. For
example, goroject reusing a large amount @fisting code may show an unexpectedly
sharp jumpearly inthe code phasshen reused code is placedtire configuredibrary.
Figure 6-13 shows aexample in which codgrowth made several jumps resulting from
reuse but then followed the model derived for the local environment.

Example 13:
Tracking Software Changes

Goal: Determine whether requirements and design are stable.

Measures needed: Changes to source code and manager’s project estimates.
(See Section 4.4.)

By tracking the changesade tothe controlled sourcérary, a manager caidentify
unstable requirements or design. Plottingldakavior of ecurrent project’'s changeate
against the organization’s predictivedel indicates whethée project is on track or is
deviating. Exaggeratdtht spots (periods without changes)lamge jumpgmany changes
made atthe same time) inthe datashould raise flag$or further investigation. Some
deviationsmay be readily explainethr example, during testing, changaese often
grouped and incorporated into the configured software asahee timethus causing a
large jump in the weekly change rate.

SEL-94-102 90

System | Acceptance
Design Code/Test Test Test

100

%0 <-|— Build 3

80

70

60

50 -

40 Build 1

% of Total LOC

10

. i . . . P
10 20 30 40 50 60 70 80 90 100
% of Schedule

Figure 6-13. Growth Rate Deviation

Figure 6-14 presents axample fromactual data for a project thaxperienced a higher
than normal changeate. Therequirements for this 130-KSLOE&ystemwere highly
unstable, resulting in a deviation from #rasting modelintroduced in Figuré-12). By
recognizing the changeate early, managers could compensate by tightening CM
procedures to maintain the quality and the schedule.

| System | Acceptance

Design Code/Test Test Test

10.00

9.00

8.00 —

7.00 —

6.00 —

5.00

4.00

3.00

Cumulative Changes per KSLOC

2.00 —

1.00

0.00

Figure 6-14. Change Rate Deviation

91 SEL-94-102

Example 14:
Tracking Staff Effort

Goal: Determine whether replanning is necessary.

Measures needed: Initial project plan and weekly effort data.
(See Sections 4.1 and 4.4.)

By usingthe expected effort distribution astffing profileover thelife-cycle phases, a
manager can predict thetal costand schedule based thre effort spent to date. rifiore

effort than was planned is required to complbiedesign of a systenthe remaining

phaseswill probably require proportionately more effort. After determinwigy a
deviation occurred, amanager can make an informeesponse by adjustingtaffing,

increasing the schedule, or scaling back functionality.

Deviations in effort expenditures can also raise quality flags. If all milestones are being met
on an understaffed project, the tearay appear to béighly productive, but the product
quality may besuffering. In such a casthe manager shoulibt automatically reduce
effort predictions. An audit of design and cqumeducts,usingboth effort data andrror

data, can support an informed decision about whether to add staff to compengatk for

not thoroughly completed in earlier phases.

Figure 6-15 presents an example of the use of measurement data in monitoring a project to
determine whetheeplanning is necessaiyffort data were &ey factor inmanagement’s
detection and correction of several problethmst would havgeopardized this project’s
eventual success.

Build
1

Build
2

Build
3

Detailed
Design

Prelim
Design

Regmts
| Analysis

System
Testing

Acceptance| System
26 Testing Delivery — _|
(4 L J
| oo o _
Second Replan — S oo Actual Data
22

18 —

First Replan
14 —

Full-Time- Equivalent (40-Hour Work Weeks) of Staff

0 10 20 30 40 50 60 70 80 90 100 110 120

Figure 6-15. Staff Effort Deviation

SEL-94-102 92

The original staffing plarwas based on an underestimation ofsiystem sizeToward the
end of thedesign phase, 40 percent more effort thbianned was regularly required,
indicating that thesystem hadyrown andthat replanningwas necessary. Although the
manager’s estimates of size didt reflect thesignificant increasethe staffing profile
indicatedthat thesystem was probabiyuch larger than anticipate@ihe required effort
continued to grow, however, in spite of the rn@an thatprojected develing offand then

a decline. A subsequent audit reveatedt anunusually high number of requirements
were still unresolved or changing, resulting in excessige/ork. As a part of the
corrective action, a second replanning activity was needed.

Example 15:
Tracking Test Progress

Goal: Determine whether the testing phase is progressing as
expected.

Measures needed: Failure report data and change data.
(See Section 4.2.)

By consistently trackingeported versuBxed discrepancies, a manager gains ingigfiat
software reliability, testing progress, anstaffing problemsThe operfailure reports
should decline atesting progressasmlessthe project is understaffed or the software has
many defects.

When the “open” curvealfs
below the*fixed” curve, defects
are being corrected fastethan
new ones areeported. At that
time, a manager can more cof
fidently predict thecompletion
of the testing phase. Figure 6-1
shows anexample of discrep-
ancy tracking that gave the
manager an early indication o i b
poor softwarequality (at Week 027 Fixed
15). Staff membersvere added -
to increase the error-correctiof 0 | L L L |
rate (during Weeks 20 through oo R Offesﬂng oo % ®
35), and thesystem attained

stability (at Week 35).

Number of Failure Reports
(in Thousands)
1
N

Figure 6-16. Tracking Discrepancies

93 SEL-94-102

Example 16:
Tracking Software Errors

Goal: Determine the quality of the software.

Measures needed: Error report data, historical models, and size estimates.
(See Sections 4.2, 4.4,5.3.3, and 6.1.3.)

Onecommonlyused measure of softwageality isthe software error ratd@racking the
project’s error rateagainst an organization’s historical model can providsinaple
estimate of the predictegliality of the deliveredsoftware. A consistent understanding of
what to count as an errenableshe organization tonake reasonable predictions of the
number of errors to be uncovered, as well as when they will be found.

The model in Figuré-8 indicatesthat detected errors were reducecdhhblf in subsequent
phases following coding and umgsting. By estimatinghe totalsize ofthe software and

by tracking the errors detectetliring the coding and unit testing phase, the project
manager can both observe thality ofthe existing system relative tihne model and also
project the quality of the delivered software.

Figure 6-17 is anotheriew of the same model showinthe cumulativeerrors detected
throughout thdife cycle (see also Figuré-7). Themodel comparesrror rates reported
during the coding andarly testphases of an actual NASA project. Téeor rate can
deviate from thenodel formanyreasonsjncluding the possibility that thedevelopment
team is not reporting
errors. However, it is

. X System Acceptance
still worthwhile to track Design Code/Test Test Test
the errors and tassume
that the information is 7

reasonably reliable. The
example indicatesthat
the projectedquality or
reliability (based on the
predicted error rate) is
an improvementver the
average local project;
indeed, in this case the
project turnedout to be
an exceptionally reliable
system.

Cumulative Errors per KSLOC
N
|

Schedule

Figure 6-17. Projecting Software Quality

SEL-94-102 94

6.2.3 Evaluating Processes

A third responsibility ofthe software manager is to determine whether the project’s standard
software processes are, in fasgingused, and if there iany impact orthe product. Project
personnemay fail toapply astandard process because of inadequate training irieaperience,
misunderstandings, or lack of enforcement. Whatéver reasons, the manager must try to
determine whether the defined process is being used.

Example 17:
Source Code Growth

Goal: Determine whether the Cleanroom method is being applied.

Measures needed: Project phase date estimates, completed source code, and
historical models.

(See Section 4.4.)

One characteristic of the Cleanroom method is an increamptasis orsource code
reading before the code is releasedsi@mtem integration. Themphasis can be confirmed
by tracking the source code growth and observing two phenomena:

1. A delay in the phasing of the code completion profile

2. A significantstepfunction profile ofthe code completiorate caused by the strict
incremental development of Cleanroom

The sample ot in Figure 6-18 is based on actdaka from an organizationfgst use of
the Cleanroom method. The data

exhibited both expectedphenomena, P
suggestinghat theCleanroom method| Design CodefTest Test | Test
was indeegart of the project process -
Such measuremerdanalysis is useful
only to identify occasions when
expecteddifferences donot occur, so
that themanager can try to determin
the cause.

90

80 —

70 —

60 —

50 —

40

% of Total LOC

By tracking the values of process| =0+
parameters, the manager aetermine 20
whether the process lelping toattain 10 - :
the organization’'s goals. If not, thg T T T SR B B
manager should consider changing t % of Schedule

process. The following section

dlscusse_s using measurement to guldI—eigure 6-18. Impact of the Cleanroom Method
process improvement.

on Software Growth

O —

95 SEL-94-102

6.3 Guiding Improvement

One key reason for software measurement is to guide continual improvethernrganization’'s
products and services. The same measurement activéitesupportunderstanding anshanaging
can provide a basis for improvement.

To be able to asselsw a process change affectsraduct, themanager must measure both the
processes applied and the products developed. Two key analyses must be performed:

1. Verify that the process under study shows the expegtedsured behavior (either
changed or similar to other processes).

2. Compare ongoing activities witthe baseline measuredeveloped to establish an
understanding.

A specific innovatiormay result inmany changes to process elements, sdweful and others
not. Experience on subsequent projects is needaddpt the proceshange to an environment.
The types of adaptations include the following:

» Eliminate processes that provide little or no value.
* Accentuate processes that help.

» Determine the impact of specific techniques.

» Write new policies, standards, and procedures.

» Tailor processes for specific needs.

The two examples in this section illustratde application of measurement faguiding
improvement. Additional examplemre provided iNASA’s Software Process Improvement
GuidebookReference 25).

Example 18:
Cleanroom

Assumethat anorganization’s goal is to decrease #reor rate indelivered software
while maintainingor possiblyimproving)thelevel of productivity. The organization must
understand the current softwagagineeringorocessusing historicaldata toestablish a
baseline for its error rate and productivity measures.

In this examplethe organization has decided to change the process by introducing the
Cleanroom method (see Refered&). Cleanroom focuses aachieving highereliability

by preventing defects. Because the organizatjamsary goal is to reduce therror rate,

there is no concern that thH@leanroom method doesot address reuse, portability,
maintainability, or many other process and product characteristics.

As the organization develops newroducts using the modified process, which
incorporates the Cleanroom method, it must continue to cdiéeatfor both process and
product measures and look for possible changes. Kemindthat achanges notalways
animprovementit must be possible to measureo things: (1) that adifference exists
between theriginal andthe changeg@roductand(2) that thenew product is bettethan
the original. Table 6-7 lists the measutesd are importanndicators for thisxample and

SEL-94-102 96

summarizes theiusage. Other software process gmoduct characteristics, such as
schedule, maintainabilittand amount of reuseay also reveal deviations beyond the
expectedbaselineranges. Such deviations must be investigated to determine whether the
effect is related to the introduction of the Cleanroom method.

Table 6-7. Indicators of Change Attributable to Cleanroom

Measure Type Indicator
Cost
Effort Product Expectation: Cleanroom should not

decrease productivity.

Effort Process Expectation: Cleanroom may show
distribution increased design time.

Size

Software Product Expectation: Cleanroom should have no
size impact.

Size growth | Process Expectation: Cleanroom may affect
measured profile.

Number of Product Expectation: Cleanroom should increase
Errors reliability.

To observe changes, the organization narglyzethe measuremediata at regular
intervals duringthe Cleanroom development period and compare the results with the
baseline.For example, Figure -89a compares the results ofeasuring development
activities on severdbEL projects that used tilieanroom method against the current
baseline activity profile inthe same organization. The slight changesthe effort
distribution profilessuggest that theew methodnay haveaffected thedevelopment
process, but theélifference inpercentages iaot conclusive. A closefook (seeFigure
6-19b) at thesubactivities withirthe “code” categoryeveals more substanti@ifferences

and provides clear evidence of an impacthmrelative percentages tiie code writing

and code reading processes.

During the Cleanroonexperiment (see Referentd), the SELalso compared another
measure, softwarsize growth, with the baseline. Figures-18 illustrates themarked
differences betweethe profiles. The Cleanrooprofile exhibits amore pronounced
stepwise growth pattern, which results fromlifgher number o$oftwarebuildsrequired
by the Cleanroom method. Whereas developgrgally usedtwo orthree builds on
projects thatmade upthe baseline, theyused fromfive to eight builds during the
Cleanroom experiment.

97 SEL-94-102

Baseline Cleanroom Projects

Other Desi Other
esign 9 .
27(% 21% Design
33%

Test

27%

Code Code
25% 19%

Test
28%

a. All Activities

Baseline Cleanroom Projects
Code Reading Code
20% Writing
48%
Code
. Reading
Code Writing 5206

80%

b. Code Activities Only

Figure 6-19. Impact of the Cleanroom Method on Effort Distribution

Both of the measures discussed above—effort by activity soffware growth—are
strong initial indicators that the Cleanroom method has indeed chidnegpbcess. Those
process measures alone cannot, however, prove thatahge has benefitélde product.

To determine that the change is an improvement requir@sadysis oimeasures based on
the project goalsspecifically, highemproductreliability (that is, lowererror rates) and
stable productivity. Tabl&-8 shows the error ratad productivity measures for the
baselineand experimental projects usithg Cleanroom method. (The Cleanroom
experiment includeslata through thesystem testing phase and excludes acceptance
testing; baseline valueshown in the table have been adjusted to represengathe
portions of the life cycle.)

The results of theexperiment appear to provigeeliminary evidence othe expected
improvement irreliability after introducing the Cleanroom method analy also indicate
an improvement in productivity. Two conclusions can be drawn:

1. Process measures caarify that adopting anew technology has affected the
baseline process.

SEL-94-102 98

Table 6-8. Impact of the Cleanroom Method on Reliability and Productivity

Error Rate Productivity
Data Source (Errors per KDLOC) (DLOC per Day)
Baseline 5.3 26
Cleanroom 1 4.3 40
Cleanroom 2 3.1 28
Cleanroom 3 6.0 20

2. Productmeasures can quantifige impact (positive, negative, or none) of a new
technology on the product.

Both types ofmeasures can then be used to mddel new process and expand the
experience baseline.

Example 19:
Independent Verification and Validation

Not all process changes result in measyrextiuctbenefits. In1981, the SEL studied a
testing approachsing an independent verification and validation&Wy process. IV&V
promised to improveerror detectionand correction bjinding errors earlier in the
development cyclehus reducingcostand increasing overatliability with no negative

impact on productivity. Determininthe effect othis testing process omliability and

cost were two major study goals. Table 6-9 lists the measures that are important indicators
for this example and summarizes the use of each.

Measurement analysts selecte projects for IV&V study andwo similar ones for use
as baseline compariseffiforts. Forthis study the activities performed bthe V&V team
included the following:

» Verifying requirements and design

* Performing independent system testing

* Ensuring consistency from requirements to testing
* Reporting all findings

The next series of figures shows the measured results of the study.

99 SEL-94-102

Table 6-9. Indicators of Change Attributable to IV&V

Measure Type Indicator
Cost
Effort Product Expectation: Cost of IV&V effort would be offset by

reductions in error correction effort and decreases in
system and acceptance test effort.

Effort Process Expectation: IV&V process would show increased

distribution effort in early phases.

Staffing Process Expectation: Greater startup staffing for IV&V would

profile affect profile model.

Errors

Number Product Expectation: IV&V process would increase
reliability.

Source Process Expectation: The number of requirements and

design errors found in later phases would decrease.

Figure 6-20 illustrates theeffect of IV&V on requirements and desigerrors.
Requirements ambiguities and misinterpretatiwese reduced by 87 percent. The results
show relatively little effect on design errors, however, especially on complex design errors.

Baseline V&V
Requirements—y Requirements—, Functional
8% Functional 1% Specs
Specs 7%
8%
Design Design
84% 92%
Simple: 66% Simple: 70%
Complex: 18% Complex: 22%

Figure 6-20. Impact of IV&V on Requirements and Design Errors

Figure 6-21 depicts the percentageeabrs found after thetart ofacceptance testing.
The IV&V projectsexhibited a slight deease in suclerrors but showed nsignificant
increase in the early detection of errors.

SEL-94-102 100

20%

20 +

18 7 16%
16 -

14
12 4
10 o

% of Errors

o N A O 0
|

Baseline V&v

Figure 6-21. Percentage of Errors Found After Starting Acceptance Testing

Figure 6-22 shows therror rates byhase; the rates in the operations phase are the key
indicators of IV&V effectiveness. Thaaselineerror rateduring operations i6.5 errors
per KSLOC; however, the error rate for the IV&V projects was slightly higher.

12 4
o x@o X IV&V Project 1
10 — 0 IV&V Project 2
9 —
8 - 0(8.2)
Q
9
a7
4
g 67
4
e 5
i}
4
3 -
0(2.4) X (2.4)
5
X (1.3 0 (1.4)
1 077 o0(0.89)
0 f f f
Code/Unit Test System Test Acceptance Test Operations

Figure 6-22. IV&V Error Rates by Phase

The final indicators for this experiment were effort distribution awdrall cost. Figure
6-23 shows that proceshange in the effort distribution by phadiel occur with the
IV&V projects. According to expectation, developed&sign effortslightly decreased,;
however, the substantial increase in coding and unit testing was somewhat surprising.

101 SEL-94-102

Baseline V&V

Design
23%

Design

31% System and
Acceptance
Test 29%

System and
Acceptance

Test 41%

Code and Unit Code and Unit
Test 28% Test 48%

NOTE: This comparison ignores the "other" category.

Figure 6-23. Impact of IV&V on Effort Distribution

Figure 6-24 shows thienpact ofthe IV&V process inwo areas: the overhead of the
IV&V team itself andthe increasedost to thedevelopment team because of their
interactions with a newgroup. Together, theverall costincreased by 85 percent, an
unacceptably high cost to pay for no measurable increase in overall product quality.

O V&V Overhead
E]l Managers
Developers

Staff-Months per KDLOC

7

Baseline V&V

Figure 6-24. Impact of IV&V on Cost

This example isiot intended to indicatéhat 1IV&V technology is nevebeneficial. On
projects requiringextremely high levels of safegndreliability, the benefits ofl V&V can
often outweigh the addezbst. The cited software project was a ground-based;life-
critical systemfor which the extrasafety wasnot worth theadded overheadEvery
organization must judge the appropriateness of a potential software processastimge
the context of the local environment and the organization’s goals.

SEL-94-102 102

Chapter 7. Experience-Based Guidelines

Chapter Highlights ||

[
/ MEASUREMENT GUIDELINES

O The goal is application of results, not data collection.

O The focus should be on self-improvement, not external
comparison.

Measurement data are inexact.
Interpretation is limited by analysts’ abilities.

Measurement should not threaten personnel.

O o o o

Automation of measurement has limits.

103 SEL-94-102

to include software measurement @art of its development process. Some of these

guidelines have beempeatedseveral timeshroughoutthis document. Although some
may seem counterintuitive, each has been derived fitten experiences of extensive, mature
measurement programs.

T he following guidelinesire precautionary notes fany software organization thgans

Guideline 1:
Data collection should not be the dominant element of process
improvement; application of measures is the goal.

Focusing on collecting data rather than on analyzing and applying the data wastes time, effort, and
energy. Althoughmanyorganizations areonvincedthatmeasurement is a useful addition to their
software development amdaintenance activities, they dot fully planfor the usebenefits, and
applications othe collected measures. As a result, the measurement program focdstsiran

thelist of measures to be collected @hdformsthatwill be used to collect thdata, rathethan

on the specific goals of the measurement efforts.

Having specific anctlearly definedgoals facilitatesthe task ofletermining whichdata are
required. Forexample, if a goal is to determieeror class distribution characteristiésr each
phase of the softwailde cycle, thendata must be gathered on wltédsses okrrors occur in
what phases.

Experience in major mature measurement programs has shatatleast thredimes as much
effort should be spent canalyzingand using collectedata as on the datzollection process
itself. Focusing ordata collection is a common mistakeimilar to that of focusing on the
development of “lessons learned” from software effatker than ompplyingprevious lessons
learned. More software lessons-learned reports are written than are ever read or used.

Software developers who are asked to collect data have the right to know how the data will be
used and how that use will benefit their organization. Plarenfdysisand application athe data

must bewell developed before the collection process is initiated. A measurement prtbgitam
focuses on the collection, as opposed to the application, of the measurement data will fail.

Guideline 2:
The focus of a measurement program must be self improvement, not
external comparison.

Because th@rimaryreasons for measurement are to guide, managamanalve within specific
software domainghe analysisand use ofny measurement information musgically focus on

local improvement. Little emphasis should be placed on comparingréscetis and information
with that from otherdomains, becausgombiningdata across digmilar domains rarelproduces

meaningful results. In fact, organizations rarelgfine specific goals requiring external
comparison.

SEL-94-102 104

There are two significant corollaries to this guideline:

1. Define standard terminologyocally instead of generatingvidely acceptedstandard
definitions. Forexample, provide a standard locHfinition of a line ofcode, beause
there is no universally accepted definition.

2. Use measurementata locally. Combining measuremerdata into larger, broader
information centers has nevemvedbeneficialand consumes unnecessary effort. Focus,
instead, on producing higher quality, local data centers.

Guideline 3:
Measurement data are fallible, inconsistent, and incomplete.

Measurement programisat rely significantly onthe high accuracy of raw softwanmeasurement
data areprobablydoomed tofailure. Because dahe nature of the measurement process and the
vast number of uncertainties that are part of it, the measurement data will always be inexact.

Relying primarily onthe statisticadnalysis ofthe data collected for softwadevelopment is a
serious mistake. Collection of measuremgsgiia is onesmall component of theverall set of
factors required toanalyze software and software technologieffectively. The following
additional factors must be considered:

» Subjective informationFhe general observations and assessments of developers,
managers, and analysts are as vital as the objective data collected via forms and tools.

» Context of the informationEach set of data must bealyzed within avell-understood
and defined context. Attempting to analyjaeger and larger sets of measurenmdsiia
adds to the confusion amiifficulty of putting each set of data in its appropriel&ss of
interpretation.

* Qualitative analysis-Because of the ever present danger thadsures are erroneous,
biased, or missing, ea@nalysisand application of measuremelata mustinclude an
analysis otthe quality ofthe information. The measuremelatta characteristics musist
be determined byanalyzing patterns, inconsistencies, gaps, and accuracy. Any
interpretation of measuremetiata results mushclude compensatiofor thequality of
the data.

» Defined goals-Successful analysis of availabtiata requires that thanalyst first
understand the goals that motivated the dali@ction. By understanding the goals of the
measurement efforts, an analyst can intega gapshiases, definitions, and eviavels
of accuracy. The goals wi#lignificantly influencethe quality, consistency, anigvel of
detail of the data analysis.

Because of thémited accuracy of measuremetiita, overdependence etatisticalanalysis of

these dataan lead terroneous conclusions and wasted efforts. Although statiahedjsis is a
powerful mechanisnfor determiningthe strengths and weaknesses of collected measures and
providing insightinto themeaning othe data, it must be used@dy onelimited tooltoward the

goal of meaningful application of measurement data.

105 SEL-94-102

Another potentiapitfall exists inthe use of dyjectivedata to characterize softwatevelopment.
Many measurememirograms attempt to characterize the processes of each development project
by recording a rating factor faeveral processlements such as “degree of use of modern
programming practices,” “experience tbke team,™complexity of the problem,” ofquality of

the environment.” AlthougBuccessful analysis oieasuremerdata must consider the context,
problem, domain, andther factorsextensive studies within NASA measuremgarmgramshave
repeatedlyfailed toshowany value in analyzinguch rating information. Because there ragzy
inconsistencies inhe definition andinterpretation of terms such as “proble@omplexity” or
“modern programming practices” and becausteinconsistencies ithe value judgments of the
people doing the ratings, the use of measuredsatshould belimited to providing a general
understanding of the project—nothing more.

Guideline 4:
The capability to qualify a process or product with measurement data is
limited by the abilities of the analysts.

Measurement data must be interpreted properly to provide meaningful nesugample, if an
analystcannotclearly and precisely defintsoftware complexity,” then no tool or measure can
determine if software i®0 complex. There is a danger in expectihgt alarge amount of data
combined with some software tool will provide a manager or analyst with a clear representation of
software quality. Thelata and tootan represerdnly whatthe manager acanalystinterprets as

quality.

Inexperienced measurement programosasionally assunthe existence of generallyaccepted
thresholddefiningthe boundary between acceptable and unaccepthksfor some measures.

For example, a program urtitat is larger thasome predetermined code size might be deemed
undesirable. Similathresholds arsometimes assumed foomplexity, error rate,changerate,
testfailure rate,andmanyothermeasures. Establishimgntrollimits for comparing measurement
values is important, but the limits must be computed on the basis of local experience. It should not
be assumedhat there issome predefined thresholthat defines anabsolute boundary of
acceptable values for local measures.

Guideline 5:
Personnel treat measurement as an annoyance, not a significant threat.

One of the most obvious and importgntdelinesfor any measurement program is émphasize
consideration for the concerns of development ammintenance personnel. Measurement
programs shouldot beused toqualify or characterize differences betweardividuals providing
measurementdata. If confidentiality is assured, project personnel will provide requested
measurement information as freely as they provide other documentation or reports.

Experience has showhat, adong as managers ensuhat measurements will never be used to
evaluate performance oate programmers, thgevelopment and maintenance teams tnglat
measurement responsibilities as just one additional task that is a part of their job.

SEL-94-102 106

Guideline 6:
Automation of measurement has limits.

Nearly every measurement program starts with two well-intentioned goals:
1. Measurement will be nonintrusive.
2. Measurement will be automated.

The process of measurement, however, cannot be totally autofssedtial human processes
cannot be replaced by automated tasiessthe measurement programlimited to a high-level
survey activity, becaudbe opinionsinsight, and focus ahdividual programmers and managers
are necessary to carry out effective measurement programs.

Tools can automate lanited set of routine processes for countsugh measures as code size,
code growth, errorgnd computer usage; howevesight intothe reasons for errorshanges,
and problems requires human interventi®dithout that insight and the verification of
measurement information, collected data are of limited value.

One NASA organization with a mature measurement program uses the autmoistdidted in
Table 7-1.

Table 7-1. Examples of Automated Measurement Support Tools

Tool Use
Code analyzers Record code characteristics at project
completion
DBMS tools Store, validate, and retrieve information
CM tools Provide counts of changes to source code
Operating system Provide computer usage data
accounting tools

This same organization has foutltht many other measures must be compiletanually;some
examples are listed in Figure 7-1.

Even a well-defined and focused measurement program remaresl interventiorBecause the
team provide®nly the limited amount of information needed s$atisfythe organizational goals,
however, the measurement program will have a correspondimigd intrusive impact on the
development and maintenance organization.

107 SEL-94-102

Compile without toolsy

Errov chavacteristicy

Change chawvacteristics of

3

Code origin (newly buils,

reused verbatim, ov

i/ﬁt i)

Weekly howry of eachv

individual by activity

Testing strategy and resudty

Post-development analysis

Plawvwned versuy actual dates,

SEL-94-102

Figure 7-1. Examples of Measures Collected Manually

108

Appendix A. Sample Data Collection Forms

his appendixontainsmany ofthe datacollection formsthat are useavithin the NASA

GSFC SEL measurement program. Reference 19 provides a detailed gusotey&dl of

the SEL forms. An organizatiagstablishing a new measurempnbgrammay want to
base its owrset offorms onthe samples. Table A-&ummarizeshe purpose of the formahich
appear in alphabetical order on the following pages.

Table A-1. SEL Data Collection Forms

Name Purpose

Change Report Form Records information on changed units; is filled out each time a
configured unit is modified

Component Origination Provides information on software units as they are entered into the
Form project's configured library
Development Status Form Provides a record of the current status of the project parameters; is filled

out by the project manager on a regular basis

Maintenance Change Characterizes the maintenance performed in response to a change
Report Form request

Personnel Resources Form | Provides information on hours spent on a project and how the effort was
distributed; is filled out weekly by software developers or maintainers

Project Completion Records final project statistics
Statistics Form

Project Estimates Form Records the completion estimates for project parameters; is filled out by
project managers

Project Startup Form Records general project information collected at the project startup
meeting
Services/Products Form Records use of computer resources, growth history, and services effort;

is completed weekly

Subjective Evaluation Form | Records opinions that characterize project problems, processes,
environment, resources, and products

Subsystem Information Provides subsystem information at preliminary design review and
Form whenever a new subsystem is created

Weekly Maintenance Effort Records hours expended on maintenance activities
Form

109 SEL-94-102

CHANGE REPORT FORM

Name: Approved by:

Project: Date:

Section A - ldentification

Describe the change: (What, why, how)

Effect: What components are changed? Effort: What additional components
Prefi N Vorsi were examined in determining
remx ame ersion what change was needed?

(Attach list if more space is needed)

Location of developer's source files:

month day year

. . Check here if change involves
Need for change determined on: Ada components. (If so, complete
Change completed (incorporated into system): questions on reverse side.)

1lhr/less 1hr/lday 1/3days > 3days

Effort in person time to isolate the change (or error):

Effort in person time to implement the change (or correction):

Section B - All Changes

Type of Change (Check one) v N Effects of Change

[Error correction [J optimization of time/space/ [O was the change or correction to one and only one
[] planned enhancement accuracy component? (Must match Effect in Section A)
[implementation of requirements [Adaptation to environment _

change change [I bid you look at any other component? (Must
[improvement of clarity, [other (Describe below) match Effort in Section A)

maintainability, or documentation |:| |:| bid h b " . g

) id you have to be aware of parameters passe

O Impro_vement (_)f user services explicitly or implicitly (e.g., COMMON blocks) to or
[Insertion/deletion of debug code from the changed components?

Section C - For Error Corrections Only

Source of Error Class of Error Characteristics
(Check one) (Check most applicable)* (Check Y or N for all)

Y N

[initialization o)
[[omission error (e.g., something was left out)

|:| Logic/control structure

(e.g., flow of control incorrect)
a Design O interface (internal) [0 commission error (e.g., something incorrect
O code (module-to-module communication) was included)

[Interface (external)
(module to external communication)

O Requirements
O Functional specifications

O previous change [O Error was created by transcription (clerical)

[pata (value or structure)

(e.g., wrong variable used) For Librarian's Use Only
Computational Number:
e.g., error in math expression :
€9, I Xp ion) Date:
. ’ Entered by:
If two are equally applicable, check the Checked by

one higher on the list.

JANUARY 1994

Figure A-1. Change Report Form (1 of 2)

SEL-94-102 110

CHANGE REPORT FORM

Ada Project Additional Information

1. Check which Ada feature(s) was involved in this change (Check all that apply)

[Datatyping [0 Program structure and packaging
[0 Subprograms [J Tasking

[0 Exceptions [System-dependent features

[0 Generics [Other, please specify

(e.g., /O, Ada statements)
2. For anerror_ involving Ada components:

a. Does the compiler documentation or the language

(YIN)

reference manual explain the feature clearly?

b. Which of the following is most true? (Check one)
[0 Understood features separately but not interaction
[0 Understood features, but did not apply correctly
[Did not understand features fully

[Confused feature with feature in another language

c. Which of the following resources provided the information

needed to correct the error? (Check all that apply)

[J Class notes O Own memory
[J Adareference manual [Someone not on team
[0 Own project team member [Other

d. Which tools, if any, aided in the detection or correction of this error? (Check all that apply)

[0 Compiler [Source Code Analyzer

[Symbolic debugger [P&CA (Performance and Coverage Analyzer)
[J Language-sensitive editor [J DEC test manager

O cwms [J Other, specify

3. Provide any other information about the interaction of Ada and this change

that you feel might aid in evaluating the change and using Ada

6201G(13)-13

NOVEMBER 1991
Figure A-1. Change Report Form (2 of 2)

111

SEL-94-102

COMPONENT ORIGINATION FORM

Identification

Name:

Project: Date:

Subsystem Prefix:

Component Name:

Configuration Management Information

Date entered into controlled library (supplied by configuration manager):

Library or directory containing developer's source file:

Member name:

Relative Difficulty of Developing Component
Please indicate your judgment by circling one of the numbers below.

Easy Medium Hard
1 2 3 4 5
Origin

If the component was modified or derived from a different project, please indicate the
approximate amount of change and from where it was acquired; if it was coded new (from
detailed design) indicate NEW.

NEW For Librarian's Use Only
Extensively modified (more than 25% of Number:

statements changed) Date:

Slightly modified Entered by:

Old (unchanged) Checked by:

If not new, what project or library is it from?
Component or member name:

Type of Component (Check one only)

INCLUDE file (e.g., COMMON) BLOCK DATA file

Control language (e.g., JCL, DCL, CLIST) Ada subprogram specification
ALC (assembler code) Ada subprogram body
FORTRAN source Ada package specification
Pascal source Ada package body

C source Ada task body

NAMELIST or parameter list Ada generic instantiation
Display identification (e.g., GESS, FDAF) Ada generic specification
Menu definition or help Ada generic body

Reference data files Other

Purpose of Executable Component

For executable code, please identify the major purpose or purposes of this component.
(Check all that apply).

I/O processing Control module
Algorithmic/computational Interface to operating system
Data transfer Process abstraction
Logic/decision Data abstraction

NOVEMBER 1991
Figure A-2. Component Origination Form

SEL-94-102 112

DEVELOPMENT STATUS FORM

Name:

Project: Date:

Please complete the section(s) that is appropriate for the current status of the project.

Design Status

Planned total number of components to be designed
(New, modified, and reused)

Number of components designed
(Prolog and PDL have been completed)

Code Status

Planned total number of components to be coded
(New, modified, and reused)

Number of components completed
(Added to controlled library)

Testing Status System Test Acceptance Test

Total number of separate tests planned

Number of tests executed at least one time

Number of tests passed

Discrepancy Tracking Status (from beginning of system testing)

Total number of discrepancies reported

Total number of discrepancies resolved

Specification Modification Status (from beginning of requirements analysis)

Total number of specification modifications received

Total number of specification modifications completed (implemented)

Requirements Questions Status (from beginning of requirements analysis)

Total number of questions submitted to analysts

Total number of questions answered by analysts

Check here if there For Librarian's Use Only
are no changes
Number:
Date: %
Entered by: %
Checked by: g

NOVEMBER 1991
Figure A-3. Development Status Form

113 SEL-94-102

Name:

Project:

OSMR Number:

Date:

MAINTENANCE CHANGE REPORT FORM

For Librarian's Use Only

Number:
Date:

Entered by:
Checked by:

WL 0T T RO T T AW T

SECTION A: Change Request Information

Functional Description of Change:

What was the type of modification?

—— Correction
—— Enhancement
— Adaptation

Components Added/Changed/Deleted:

What caused the change?

A T T T

SECTION B: Change Implementation Information

Requirements/specifications

Software design
Code

Previous change
Other

Estimate effort spent isolating/determining the change:
Estimate effort to design, implement, and test the change:

< 1hr

lhrto 1dayto 1weekto
1 day 1week 1month >1month

Check all changed objects:

— Design Document
—— Code

_ System Description
— User's Guide
— Other

If code changed, characterize the change (check most
applicable):
—— Requirements/Specifications Document — Initialization

Logic/control structure

(e.g., changed flow of control)

Interface (internal)

(module to module communication)
— Interface (external)
(module-to-external communication)
Data (value or structure)

(e.g., variable or value changed)

Computational
(e.g., change of math expression)

Other (none of the above apply)

Enter the number of components:

Estimate the number of lines of code (including comments):

Enter the number of the added components that are:

added changed deleted
added changed deleted
totally new totally reused reused with

modifications

NOVEMBER 1991

Figure A-4. Maintenance Change Report Form

SEL-94-102

114

6201G(39)-12

Name:

Personnel Resources Form

Project:

Date (Friday):

SECTION A: Total Hours Spent on Project for the Week:

SECTION B: Hours By Activity (Total of hours in Section B should equal total hours in Section A)

Activity

Activity Definitions

Hours

Predesign

Understanding the concepts of the system. Any work prior to the actual design (such
as requirements analysis).

Create Design

Development of the system, subsystem, or components design. Includes development
of PDL, design diagrams, etc.

Read/Review Design

Hours spent reading or reviewing design. Includes design meetings, formal and informal
reviews, or walkthroughs.

Write Code

Actually coding system components. Includes both desk and terminal code development.

Read/Review Code

Code reading for any purpose other than isolation of errors.

Test Code Units

Testing individual components of the system. Includes writing test drivers.

Debugging

Hours spent finding a known error in the system and developing a solution. Includes gen-
eration and execution of tests associated with finding the error.

Integration Test

Writing and executing tests that integrate system components, including system tests.

Acceptance Test

Running/supporting acceptance testing.

Other

Other hours spent on the project not covered above. Includes management, meetings,
training hours, notebooks, system descriptions, user's guides, etc.

SECTION C: Effort On Specific Activities (Need not add to A)
(Some hours may be counted in more than one area; view each activity separately)

documentation.

Rework: Estimate of total hours spent that were caused by unplanned changes or errors. Includes
effort caused by unplanned changes to specifications, erroneous or changed design, errors or
unplanned changes to code, changes to documents. (This includes all hours spent debugging.)

Enhancing/Refining/Optimizing: Estimate of total hours spent improving the efficiency or clarity of design, or
code, or documentation. These are not caused by required changes or errors in the system.

Documenting: Hours spent on any documentation of the system. Includes development of design documents,
prologs, in-line commentary, test plans, system descriptions, user's guides, or any other system

Reuse: Hours spent in an effort to reuse components of the system. Includes effort in looking at other
system(s) design, code, or documentation. Count total hours in searching, applying, and testing.

IRl

For Librarian's Use Only

Number:

Date:

Entered by:

Checked by:

NOVEMBER 1991

Figure A-5. Personnel Resources Form

115

SEL-94-102

Name:

Personnel Resources Form

(CLEANROOM VERSION)

Project:

Date (Friday):

SECTION A: Total Hours Spent on Project for the Week:

SECTION B: Hours By Activity (Total of hours in Section B should equal total hours in Section A)

generating JCL, compiling components, building libraries, and defining inputs and
probabilities.

Activity Activity Definitions Hours
Predesign Understanding the concepts of the system. Any work prior to the actual design (such
as requirements analysis).
Pretest Developing a test plan and building the test environment. Includes generating test cases,

Create Design

Development of the system, subsystem, or components design. Includes box structure
decomposition, stepwise refinement, development of PDL, design diagrams, etc.

Verify/Review Design | Includes design meetings, formal and informal reviews, and walkthroughs.

Write Code Actually coding system components. Includes both desk and terminal code development.

Read/Review Code Code reading for any purpose other than isolation of errors. Includes verifying and
reviewing code for correctness.

Independent Test Executing and evaluating tests of system components.

Response to SFR Isolating a tester-reported problem and developing a solution. Includes writing and
reviewing design or code to isolate and correct a tester-reported problem.

Acceptance Test Running/supporting acceptance testing.

Other Other hours spent on the project not covered above. Includes management, meetings,

training hours, notebooks, system descriptions, user's guides, etc.

SECTION C: Effort On Specific Activities

Methodology Understanding/Discussion: Estimate the total hours spent learning, discussing, reviewing or
attempting to understand cleanroom-related methods and techniques. Includes all time spent in training.

(]

For Librarian's Use Only

Number:

Date:

Entered by:

Checked by:

NOVEMBER 1991

Figure A-6. Personnel Resources Form (Cleanroom Version)

SEL-94-102

116

PROJECT COMPLETION STATISTICS FORM

Name:

Project:

Date:

Phase Dates (Saturdays)

Staff Resource Statistics

Phase

Start Date

Requirements Definition

Technical and
Management Hours

Design

Services Hours

Implementation

System Test

Computer Resource Statistics

Acceptance Test Computer CPU hours No. of runs
Cleanup
Maintenance
Project End
Project Size Statistics
General Parameters Source Lines of Code

Number of subsystems Total
Number of components New
Number of changes Slightly Modified
Pages of documentation Extensively Modified

Old

Comments

Executable Modules Executable Statements Statements

Total Total Total
New New New

Slightly Modified

Slightly Modified

Slightly Modified

Extensively Modified

Extensively Modified

Extensively Modified

old

old

old

Note: All of the values on this form are to be actual values at
the completion of the project. The values entered by
hand by SEL personnel reflect the data collected by
the SEL during the course of the project. Update
these according to project records and supply values

for all blank fields.

For Librarian's Use Only

Entered by:
Checked by:

Number:

Date:

5201G(39)-11

NOVEMBER 1991

Figure A-7. Project Completion Statistics Form

117

SEL-94-102

PROJECT ESTI

Name:

Project:

MATES FORM

Date:

Phase Dates (Saturdays)

Phase Start Date

Staff Resource Estimates

Programmer Hours

Requirements Definition

Management Hours

Design

Services Hours

Implementation

System Test

Acceptance Test

Cleanup

Project End

Project Size Estimates

Number of subsystems

Number of components

Source Li

nes of Code

Total

New

Modified

Old

Note: All of the values on this form are to be
of the project. This form should be

8 weeks during the course of the project.

estimates of projected values at completion

submitted with updated estimates every 6 to

For Librarian's Use Only

Number:

Date:

Entered by:

Checked by:

NOVEMBER 1991

Figure A-8. Project Estimates Form

SEL-94-102

118

6201G(13)-16

PROJECT STARTUP FORM

Name:

Project: Date:

PLEASE PROVIDE ALL AVAILABLE INFORMATION

Project Full Name:

Project Type:

Contacts:

Language:

Computer System:

Account:

Task Number:

Forms To Be Collected: (Circle forms that apply)
PEF PRF CLPRF DSF SPF SIF COF CCF CRF SEF PCSF WMEF MCRF

General Notes:

Personnel Names (indicate with *if not in database):

6201G(13)-36

NOVEMBER 1991
Figure A-9. Project Startup Form

119 SEL-94-102

SERVICES/PRODUCTS FORM

Project:
Date (Friday):

COMPUTER RESOURCES

Computer

CPU Hours No. of Runs

GROWTH HISTORY

Components

Changes

Lines of Code

SERVICES EFFORT

Service Hours
Tech Pubs
Secretary
Proj Mgmt For Librarian's Use Only
Other Number:
Date:
Entered by:
Checked by:

NOVEMBER 1991

SEL-94-102

Figure A-10. Services/Products Form

120

6201G(13)-08

SUBJECTIVE EVALUATION FORM

Name:

Project: Date:

Indicate response by circling the corresponding numeric ranking.

|. PROBLEM CHARACTERISTICS

1 2 3 4 5
Easy Average Difficult

2. How tight were schedule constraints on project?

1 2 3 4 5
Loose Average Tight

3. How stable were requirements over development period?

1 2 3 4 5
Loose Average High

4. Assess the overall quality of the requirements specification documents, including their clarity, accuracy,
consistency, and completeness.

1 2 3 4 5
Low Average High

5. How extensive were documentation requirements?

1 2 3 4 5
Low Average High

6. How rigorous were formal review requirements?

1 2 3 4 5
Low Average High

II. PERSONNEL CHARACTERISTICS: TECHNICAL STAFF

7. Assess overall quality and ability of development team.

1 2 3 4 5
Low Average High

the project?
1 2 3 4 5
Low Average High

9. Assess the development team's experience and familiarity with the development environment (hardware
and support software).

1 2 3 4 5
Low Average High
10. How stable was the composition of the development team over the duration of the project?
1 2 3 4 5
Loose Average High

1. Assess the intrinsic difficulty or complexity of the problem that was addressed by the software development.

8. How would you characterize the development team's experience and familiarity with the application area of

FOR LIBRARIAN'S USE ONLY

Number: Entered by:

Date: Checked by:

6201G(13)-29

NOVEMBER 1991
Figure A-11. Subjective Evaluation Form (1 of 3)

121

SEL-94-102

SUBJECTIVE EVALUATION FORM

11.

12.

13.

14,

15.

17.

18.

19.

20.

22.

Ill. PERSONNEL CHARACTERISTICS: TECHNICAL MANAGEMENT

Assess the overall performance of project management.
1 2 3 4 5
Low Average High

Assess project management's experience and familiarity with the application.

1 2 3 4 5
Low Average High
How stable was project management during the project?
1 2 3 4 5
Low Average High

What degree of disciplined project planning was used?

1 2 3 4 5
Low Average High
To what degree were project plans followed?
1 2 3 4 5
Low Average High

IV. PROCESS CHARACTERISTICS
16.

To what extent did the development team use modern programming practices (PDL, top-down
development, structured programming, and code reading)?
1 2 3 4 5
Low Average High

To what extent did the development team use well-defined or disciplined procedures to record
specification modifications, requirements questions and answers, and interface agreements?
1 2 3 4 5
Low Average High

To what extent did the development team use a well-defined or disciplined requirements analysis
methodology?

1 2 3 4 5
Low Average High

To what extent did the development team use a well-defined or disciplined design methodology?
1 2 3 4 5
Low Average High

To what extent did the development team use a well-defined or disciplined testing methodology?

1 2 3 4 5
Low Average High

IV. PROCESS CHARACTERISTICS

21. What software tools were used by the development team? Check all that apply from the list that follows

and identify any other tools that were used but are not listed.

[compiler [caT
O Linker [PANVALET
O Editor [Test coverage tool
[Graphic display builder [interface checker (RXVP80, etc.)
[rRequirements language processor [Language-sensitive editor
[Structured analysis support tool [Symbolic debugger
[] PDL processor [] Configuration Management Tool (CMS, etc.)
O 1sPF [J others (identify by name and function)
[sapP
To what extent did the development team prepare and follow test plans?
1 2 3 4 5
Low Average High

SEL-94-102

Figure A-11. Subjective Evaluation Form (2 of 3)

122

6201G(13)-30

SUBJECTIVE EVALUATION FORM

IV. PROCESS CHARACTERISTICS (CONT'D)

23. To what extent did the development team use well-defined and disciplined quality assurance procedures
(reviews, inspections, and walkthroughs)?
1

2 3 4 5
Low Average High
24. To what extent did development team use well-defined or disciplined configuration management
procedures?
1 2 3 4 5
Low Average High

V. ENVIRONMENT CHARACTERISTICS
25. How would you characterize the development team's degree of access to the development system?
1 2 3 4 5
Low Average High

26. What was the ratio of programmers to terminals?
1 2 3 4 5
81 4:1 2:1 11 1:2

27. To what degree was the development team constrained by the size of main memory or direct-access
storage available on the development system?
1 2 3 4 5
Low Average High

28. Assess the system response time: were the turnaround times experienced by the team satisfactory in
light of the size and nature of the jobs?
1 2 3 4 5
Poor Average Very Good

29. How stable was the hardware and system support software (including language processors) during the
project?

1 2 3 4 5
Low Average High

30. Assess the effectiveness of the software tools.
1 2 3 4 5
Low Average High
VI. PRODUCT CHARACTERISTICS

31. To what degree does the delivered software provide the capabilities specified in the requirements?
1 2 3 4 5
Low Average High

32. Assess the quality of the delivered software product.

1 2 3 4 5
Low Average High
33. Assess the quality of the design that is present in the software product.
1 2 3 4 5
Low Average High
34. Assess the quality and completeness of the delivered system documentation.
1 2 3 4 5
Low Average High
35. To what degree were software products delivered on time?
1 2 3 4 5
Low Average High
36. Assess smoothness or relative ease of acceptance testing.
1 2 3 4 5
Low Average High

6201G(13)-31

Figure A-11. Subjective Evaluation Form (3 of 3)

123

SEL-94-102

SUBSYSTEM INFORMATION FORM

Name:
Project: Date:
Add New Subsystems
Subsystem Subsystem Subsystem
Prefix Name Function
Change Existing Subsystems
Action
Old Subsystem Prefix (R - Rename, New Subsystem Prefix
(Must exist in the database) D - Delete) (Must not exist in the database)

Subsystem Prefix:

Subsystem Name:

This form is to be completed by the time of the Preliminary Design Review (PDR). An update
must be submitted each time a new subsystem is defined thereafter. This form is also to be
used when a subsystem is renamed or deleted.

A prefix of 2 to 5 characters used to identify the subsystem when naming
components
A descriptive name of up to 40 characters

Subsystem Function: Enter the most appropriate function code from the list of functions below:

USERINT: User Interface
For Librarian's Use Only DPDC: Data E’rocessing/Data Conversion
REALTIME: Real-time Control
Number: MATHCOMP: Mathematical/Computational
Date: GRAPH: Graphics and Special Device Support
Entered by: CPEXEC: Control Processing/Executive
Checked by: SYSSERV: System Services

NOVEMBER 1991

SEL-94-102

Figure A-12. Subsystem Information Form

124

6201G(13)-39

For Librarian's Use Onl
WEEKLY MAINTENANCE EFFORT FORM — .
Name: '
Date:
Project: Date (Friday): Entered by:
Checked by:
Section A — Total Hours Spent on Maintenance (Includes time spent on all maintenance

activities for the project excluding writing specification modifications)

Section B — Hours By Class of Maintenance
Section A)

(Total of hours in Section B should equal total hours in

Correction Hours spent on all maintenance as sociated w ith a system failure.

Enhancement Hours spent on all maintenance as sociated w ith modifying the sy stem due
to a requirements change. Includes adding, deleting, or modifying s ystem
features as a result of a requirements change.

Adaptation Hours spent on all maintenance as sociated w ith modifying a system to
adapt to a change in hardware, system softwa re, or environmental
characteristics.

Other Other hours spent on the project (related to maintenance) not covered
above. Includes management, meetings, etc.

Section C — Hours By Maintenance Activity

Section A)

(Total of hours in Section C should equal total hours in

Activity D efinitions Hours

Isolation Hours spent understanding the failure or request for enhancement or
adaptation.

Change Hours spent actually redesig ning the system based on an understanding

Design of the necessary change.

Implementation

Hours spent changing the system to complete the nece ssary change.
This includes changing not only the code, but the associated
documentation.

Unit Test/
System Test

Hours spent testing the changed or added components. Includes hours
spent testing the integration of the components.

Acceptance/ Hours spent acceptance testing or benchmark testing the modified
Benchmark Test system.
Other Other hours spent on the project (related to maintenance) not covered

above. Includes management, meetings, etc.

6201G(39)-10

NOVEMBER 1991

Figure A-13. Weekly Maintenance Effort Form

125

SEL-94-102

Appendix B. Sample Process Study Plan

SEL Representative Study Plan for
SOHOTELS
October 11, 1993
1. Project Description

The Solar and Heliospheric Observatory Telemetry SIimul8@®@HOTELS) software
development project will providemulated telemetry and engineeraigta for use in testing
the SOHO Attitude Ground Suppdistem(AGSS). SOHOTELS ibeing developed by a
team of four GSFC personnel in Ada on the STL VAX 8820. The projeetissng design,
code, and datéles from several previous projedist primarily from the SolarAnomalous,
and Magnetospheric Particle Explorer Telemetry Simulator (SAMPEXTS).

The SOHOTELS tearheld a combined preliminary design reviRDR) andcritical design
review (CDR) inApril 1993. In their detailedesign documenthe SOHOTELS team stated
the following goals for the development effort:

* To maximize reuse of existing code
* Where reuse is not possible, to develop code that will be as reusable as possible
» To make sure performance does not suffer when code is reused

2. Key Facts

SOHOTELS isheing implemented ithreebuilds sothat it can be used to generatata for
the early phases othe AGSSYwhich is a Cleanroonproject). Build development and
independent acceptance testing l@mgconducted irparallel. At presenthe test team has
finishedtesting SOHOTELSuild 1. The development team expects to comelié 2 and
deliver it to the independent test team by the end of the week.

SOHOTELS consists obix subsystems. As dline, the estimated totalumber of
components was 435, afhich 396 (91 percent) havaurrently been completediotal SLOC
for SOHOTELS was estimated at 67.6K SLOC, with 46.6K SLOCoafe to be reused
verbatim and 15.7K SLOC to be reused with modifications. As of SeptdiBp&p93, there
were 65.4K SLOC in the SOHOTELS system, or 97 percent of the estimated total.

The SOHOTELS task leader wurrently re-estimating theize of the system because
SOHOTELSwill be more complex than wamsiginally predicted. The new estimates will also
include SLOC for the schema files that are being developed.

The phase start dates for SOHOTELS are

September 9, 1992 Requirements Definition
October 3, 1992 Design
May 1, 1993 Code and Unit Test

127 SEL-94-102

June 26, 1993 Acceptance Test
May 7, 1993 Cleanup
3. Goals of the Study
The study goals for SOHOTELS are

To validate the SEL’s recommendtdoring ofthe developmeriife cycle for high-
reuse Ada projects

To refine SEL models for high-reuse software development projects in Ada,
specifically

- Effort (per DLOC, by phase and by activity)

- Schedule (duration for telemetry simulators and by phase)
- Errors (humber per KSLOC/DLOC)

- Classes of errors (e.g., initialization errors, data errors)

- Growth in schedule estimates and size estimates (fnoitral estimates to
completion and from PDR/CDR to completion)

4. Approach

The following steps will be taken to accomplish the study goals:

Understandwhich of the standard development processesbeireg followed(per
Referencel0) andvhich have beetailored for the SOHOTELS project. Ensure that
information is entered intthe SEL database that wallow SOHOTELS data to be
correctly interpreted in light of this tailoring.

Analyze project/build characteristics, effort and schedule estimates, effort and schedule
actuals, and error data on a monthly basis while development is ongoing.

At project completion, plot the effort, schedulror rate,and estimate data.
Compare these plots with current SElodels and with plots frorather high-reuse
projects in Ada. Compare and contrast the error-classaiidtaatafrom FORTRAN
projects, from Ada projects with low reuse, and from other high-reuse Ada projects.

5. Data Collection

To address these study goals, fillowing standard set of SEL data for Ada projects will be
collected:

Size, effort, and schedule estimates (Project Estimates Forms)
Weekly development effort (Personnel Resources Forms)
Growth data (Component Origination Forms and SEL librarians)

Change and error data (Change Report Forms and SEL librarians)

SEL-94-102 128

Appendix C. List of Rules

Rule Page

Understand that software measurement is a means to an end, not an end.in.tself........... 2

Focus on applying results rather than collecting data.............cooiiiiiiiiiiiii e, 13
UNderstand the QOAUS.........u e et 22
Understand how to apply MEaASUIEMENL............i i 22
Y S 0T od = L1 o 1P PPPR 23
Plan to aChieVe @n Early SUCCESS- ciiuei ittt e et eeeaa e 23
ool LS (o Tox | PP 24
Y = 1] 1 = | PSPPI 24
Organize the analysts separately from the developers...........cooivviiiiiiiii e, 26
Make sure the measures apply t0 the goalS...........oooiiiiii e 28
Keep the number of measures to a MiNIMUML....... ..o e 29
Avoid over-reporting measuremMent data.............oooeeeuiiieiiiiie e 29
Budget for the cost of the measuremMent Program. ... 30
Plan to spend at least three times as much on data analysis and use as on data.collecti®®.

Collect effort data at least MONTNLY...........ooii i 37

Collect error data only for controlled SOftware.ooii i e 39

Do not expect to measure error correction effort precisely. ... 40
Do not expect to find generalized, well-defined process measures............ccoeevvevevenieennnnnns 41

Do not expect to find a database of process MeaSUrEMENTS.oveiiiiiiiiiieeieiiiie e e e e 42
Understand the high-level process charaCteriStiCS..........ccuuiiiiiiiiiiiiiii e 42
Use simple definitions of life-CYCle Phases..........oo i 45
Use liNeS Of COUE t0 rEPIrESENT SIZE......cuue ittt e e 45
Specify which software isto be counted.............cooooii s 48

Do not expect to automate data COECHION.ooiiiiiiiiiii e 54
Make Providing QAL CASY........cceuuuiiiiiiiee ittt e et e et e et e e e et e e e eaa e e e eat e e eetnnaeaeees 55
Use commercially available tOQ0IS.............ooii 56
Expect measurement data to be flawed, inexact, and inconsistent...............ccooeeieieinneen. 57

129 SEL-94-102

Abbreviations and Acronyms

AGSS attitude ground support system

CASE computer-aided software engineering

CDR critical design review

CM configuration management

CMM Capability Maturity Model

Code Q Office of Safety and Mission Assurance (NASA)

COTS commercial offie-shelf

CPU central processing unit

DBMS database management system

DLOC developed lines of code

GSFC Goddard Space Flight Center

V&V independent verification and validation

JSC Johnson Space Center

KDLOC 1,000 developed lines of code

KSLOC 1,000 source lines of code

NASA National Aeronautics and Space Administration

PDR preliminary design review

QA quality assurance

R&D research and development

SAMPEXTS Solar, Anomalous, and Magnetospheric Particle Explorer Telemetry
Simulator

SEI Software Engineering Institute

SEL Software Engineering Laboratory

SLOC source lines of code

SME Software Management Environment

SOHOTELS Solar and Heliospheric Observatory Telemetry Simulator

131 SEL-94-102

References

1. Grady, R. B.and Caswell, DL., Software MetricsEstablishing a Company-Wid&ogram.
Prentice-Hall Inc., Englewood Cliffs, NJ, 1989.

2. NASA, DA3 Software Development Metrics Handbook, Versddhh JSC-255190ffice of
the Assistant Director for PrograBupport,Mission Operations Directorate, Johnson Space
Center, Houston, April 1992.

, DA3 SoftwareSustaining Engineering Metri¢sandbook, Versior2.0, JSC-26010,
Office of the Assistant Director for PrograBupport, Mission Operations Directorate,
Johnson Space Center, Houston, December 1992.

, DA3 Development Project Metrics Handbook, Version 5.0, JSC-36Xfée of the
Assistant Director for PrograrBupport, Mission Operations Directorate, Johnson Space
Center, Houston, March 1993.

5. Musa, J. D.Jannino, A., and Okumuto, K., SoftwaRgliability: Measurement, Prediction,
Application, McGraw-Hill, New York, 1987.

6. Rifkin, S., and Cox, C., Measurement in Practice, CMU/SEI-91-TR-16, SofEmgneeering
Institute, Carnegie Mellon University, August 1991.

7. Daskalantonakis, M. K., “A Practiceiew of Software Measurement and Implementation
Experiences WitiMotorola,” IEEE Transactions on Software Engineering, Volugte-18,
November 1992.

8. Decker, W., HendrickR., and ValettJ., SoftwaréngineeringLaboratory Relationships,
Models, and Management Rules, SEL-91-001, Softwé&nmegineering Laboratory,
NASA/GSFC, February 1991.

9. Condon, S.Regardie, M., Stark, Mand WaligoraS., Costand Schedule Estimation Study
Report, SEL-93-002, Software Engineering Laboratory, NASA/GSFC, November 1993.

10. Landis, L., McGarry, F., Waligora, S., et al., Manager's Handbook for Software Development
(Revision 1), SEL-84-101, Software Engineering Laboratory, NASA/GSFC, November 1990.

11. Paulk, M. C., Curtis, BChrissis, M.B., and Weber, CV., Capability Maturity Model for
Software, Version 1.1, CMU/SEI-93-TR-24, Software Engineering Institute, Caieton
University, February 1993.

12. McGarry, F., andeletic, K., “Process Improvement as an Investment: MeadtsiNgorth,”
Proceedings of the Eighteenthnnual Software EngineeringVorkshop, SEL-93-003,
NASA/GSFC, December 1993.

13. Currit, P. A., Dyer, M.and Mills, H. D., “Certifying the Reliability of Software,” IEEE
Transactions on Software Engineering, Vol. SE-12, No. 1, January 1986, pp. 3—-11.

14. Basili, V.R., and GreenS., “Software Process Evolution at the SEIEEE SoftwareVol.
11, No. 4, July 1994, pp. 58-66.

133 SEL-94-102

15. Rombach, HD., Ulery, B. T.,and Valett, JD., “TowardFull Life Cycle Control: Adding
Maintenance Measurement tioe SEL,” Journal ofystems andboftware, Vol. 18, 1992,
pp. 125-138.

16. Caldiera,G., McGarry, F.,Waligora, S., Jeletic, K., andBasili, V. R., Software Process
Improvement Guidebook, NASA-GB-002-94, Software Engineering Program, 1994.

17. International Function Point Users Group, Function Point Counting Practices Manual, Release
3.2, Westerville, Ohio, 1991.

18. McGarry, F.;Experimental Software Engineering: Seventeen Years of Lesstims BEL,”
Proceedings of the Seventeerinnual Software EngineeringVorkshop, SEL-92-004,
NASA/GSFC, December 1992.

19. Heller,G., Valett, J.andWild, M., DataCollection Procedures for the Softwdtrgineering
Laboratory Database, SEL-92-002, SoftwBrgineeringLaboratory, NASA/GSFC, March
1992.

20. Decker, W. and Valett)., SoftwardManagement EnvironmentSME) Concepts and
Architecture, SEL-89-003, Software Engineering Laboratory, NASA/GSFC, August 1989.

21. Hall, D., Sinclair, C., and McGarry, F.Profile of Software athe Goddard Spaddight
Center, NASA-RPT-002-94, Software Engineering Program, April 1994.

22.Basili, V. R., and Perricone, B. T. “Softwarerdts and Complexity: ArEmpirical
Investigation,” Communications of the ACM, January 1984, Vol. 27, No. 1.

23. Basili, V.R., and Weiss, D. M. “A Methodologipr Collecing Valid Software Engineering
Data,” IEEE Transactions on Software Engineering, November 1984.

24. Basili, V.R., and Rombach, H. D. “The TAME Project. Towards Improvement-Oriented
Software Environments,” IEEE Transactions on Software Engineering, June 1988.

25. Caldiera,G., Jeletic, K., McGarryF., Pajerski,R., et al.,, Software Procebsprovement
Guidebook, NASA-GB-001-95, Software Engineering Program, 1995.

26. Kelly, J.C., Sherif, J.S., and HopsJ., “An Analysis of DefecDensities Found During
Software Inspections,” Journal of Systems and Software, Vol. 17, No. 2, February 1992.

SEL-94-102 134

